THIRD EDITION

Practical Hydraulics
and Water Resources
Engineering

CRC Press
Melvyn Kay O cere



Practical Hydraulics
and Water Resources

Engineering

THIRD EDITION



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com



Practical Hydraulics
and Water Resources

Engineering

THIRD EDITION

Melvyn Kay

CRC Press
Taylor &Francis Group
oooooooooooooooooooooo
CRC Press is an imprint of the
Taylor & Francis Group, an informa business




CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161021

International Standard Book Number-13: 978-1-4987-6195-6 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Kay, Melvyn. | Kay, Melvyn. Practical hydraulics.

Title: Practical hydraulics and water resources engineering / Melvyn Kay.
Other titles: Practical hydraulics

Description: Third edition. | New York, NY : Routledge, 2017. | Previous
edition: Practical hydraulics / Melvyn Kay (London ; New York : Taylor &
Francis, 2008). | Includes bibliographical references and index.
Identifiers: LCCN 2016027431| ISBN 9781498761956 (pbk.) | ISBN 9781498761963
(e-book)

Subjects: LCSH: Hydraulics. | Hydraulic engineering.

Classification: LCC TC160.K38 2017 | DDC 620.1/06--dc23

LC record available at https://lccn.loc.gov/2016027431

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Contents

Preface
Acknowledgements

Author

1 Some basic mechanics

1.1  Introduction 1
1.2 Dimensions and units 1
1.3 Velocity and acceleration 3
1.4 Forces 4
1.5  Friction §
1.6  Newton’s laws of motion 5
1.6.1 Law 1: Forces cause objects to move 5
1.6.2 Law 2: Forces cause objects to accelerate 5
1.6.3  Law 3: For every force there is
always an equal and opposite force 7
1.7  Mass and weight 8
1.8  Scalar and vector quantities 9
1.8.1 Dealing with vectors 10
1.9  Work, energy and power 11
1.9.1 Work 11
1.9.2 Energy 12
1.9.3 Changing energy 13
1.9.4 Power 14
1.10 Momentum 14
1.10.1 The astronaut’s problem 19
1.10.2 Rebounding balls 19
1.11 Properties of water 19
1.11.1 Density 20
1.11.2 Relative density or specific gravity 21

XV
XVii
XiX



Vi

Contents

1.11.3 Viscosity 22

1.11.4 Kinematic viscosity 24
1.11.5 Surface tension 24
1.11.6 Compressibility 25

2 Water standing still: hydrostatics

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

2.9

2.10

2.11
2.12

2.13

Introduction 27

Pressure 27

Force and pressure are different 28
Pressure and depth 28

Pressure is same in all directions 33
Hydprostatic paradox 34

2.6.1 Bucket problem 34

2.6.2  Balloon problem 35

Pressure head 36

Atmospheric pressure 37

2.8.1  Mercury barometer 40
Measuring pressure 42

2.9.1 Gauge and absolute pressures 42
2.9.2  Bourdon gauges 43

2.9.3  Piezometers 44

2.9.4 Manometers 45

Designing dams 47

2.10.1 Dam paradox 50

Forces on sluice gates 52

Archimedes principle 55

2.12.1 Floating objects 58

2.12.2 Submarine problem 59

2.12.3 Ice problem 60

2.12.4 Drowning in quicksand — myth or reality? 61
Some examples to test your understanding 63

3 When water starts to flow: hydrodynamics

3.1
3.2
3.3
3.4
3.5

Introduction 65
Experimentation and theory 65
Hydraulic toolbox 67
Discharge and continuity 67
Energy 70

3.5.1 Pressure energy 71
3.5.2  Kinetic energy 72

27

65



Contents vii

3.6

3.7

3.8
3.9

3.10

3.11
3.12
3.13
3.14

Pipes

4.1
4.2
4.3

4.4

4.5
4.6
4.7

3.5.3  Potential energy 72
3.5.4 Total energy 73
Some useful applications of the energy equation 74
3.6.1  Pressure and elevation changes 74
3.6.2  Measuring velocity 76
3.6.3  Orifices 80
3.6.4  Pressure and velocity changes in a pipe 82
Some more energy applications 82
3.7.1  Flow through narrow openings 82
3.7.2  How aeroplanes fly 87
3.7.3  Airflow between buildings 88
3.7.4  Fluid injectors 89
3.7.5  Avery useful application 89
Momentum 89
Real fluids 91
3.9.1 Taking account of energy losses 91
3.9.2  Cavitation 92
3.9.3  Boundary layers 93
3.9.3.1 The Earth’s boundary layer 94
Drag forces 96
3.10.1 Stopping supertankers 99
Eddy shedding 100
Making balls swing 100
Successful stone-skipping 103
Some examples to test your understanding 104

107

Introduction 107

Typical pipe flow problem 107

Formula to link energy loss and pipe size 109

4.3.1 Laminar and turbulent flow 109

4.3.2  Formula for turbulent flow 111

The A story 112

4.4.1  Smooth and rough pipes 113
4.4.1.1  Physical explanation 115

Hydraulic gradient 116

Energy loss at pipe fittings 118

Siphons 118

4.7.1 How they work 119

4.7.2  Airvalves 120

4.7.3  Some practical siphons 120



viii Contents

4.7.4  Siphon limits 121
4.8  Selecting pipe sizes in practice 121
4.8.1  Using bydraulic design charts 126
4.8.2  Sizing pipes for future demand 129
4.9  Pipe networks 132
4.10 Measuring discharge in pipes 134
4.11 Momentum in pipes 140
4.11.1 Pipe bends 143
4.12 Pipe materials 144
4.12.1 Specifying pipes 144
4.12.2 Materials 144
4.13 Pipe fittings 146
4.14 Water hammer 149
4.15 Surge 152
4.16 Some examples to test your understanding 153

5 Channels 155

5.1 Imtroduction 155
5.2 Pipes or channels? 155
5.3 Laminar and turbulent flow 156
5.4 Using the bydraulic tools 157
5.4.1 Continuity 158
5.4.2 Energy 159
5.4.3  Using energy and continuity 161
5.4.4 Taking account of energy losses 164
5.5 Uniform flow 165
5.5.1 Channel shapes 166
5.5.2  Factors affecting flow 168
5.5.2.1  Area and wetted perimeter 168
5.5.2.2  Hydraulic radius 168
5.5.2.3  Slope 169
5.5.2.4 Roughness 169
5.5.3  Channel design formulae 170
5.5.3.1  Chezy formula 170
5.5.3.2  Manning formula 172
5.5.4  Using Manning’s formula 172
5.5.5  Practical design 176
5.6 Non-uniform flow: gradually varied 177
5.7 Non-uniform flow: rapidly varied 178
5.7.1  Flow bebaviour 179
5.7.1.1  Subcritical flow 179



Contents

5.8

5.9

Hydraulic structures for channels

6.1
6.2

6.3
6.4

6.5

$5.7.2
5.7.3

5.7.4
5.7.8
5.7.6

$5.7.1.2
$5.7.1.3
5.7.14
5.7.1.5
5.7.1.6
5.7.1.7

Supercritical flow 181
General rules 181
Spotting the difference 182
Airflow analogy 182

Back to water 184

Finger test 186

Froude number 186
Specific energy: a ‘key to open a lock’> 187

5.7.3.1

Is the flow subcritical or supercritical? 192

Critical depth 196
Critical flow 198
Flow transitions 199

5.7.6.1
5.7.6.2

5.7.6.3
5.7.6.4

Subcritical to supercritical flow 199
Supercritical to subcritical

flow (hydraulic jump) 200
Creating a hydraulic jump 201
Calculating energy losses 202

Secondary flows 203

Channel bends 205

Siting river off-takes 205

Bridge piers 205

Vortices at sluice gates 206

Tea cups 207

Sediment transport 207

Channels carrying sediment 208
Threshold of movement 209
Calculating sediment transport 210
5.10 Some examples to test your understanding 210

5.8.1
5.8.2
5.8.3
5.8.4
5.8.5

5.9.1
5.9.2
5.9.3

Introduction 213

Orifice structures 215

Free and drowned flow 217
Weirs and flumes 217
Sharp-crested weirs 218
Rectangular weirs 219
Vee-notch weirs 219

Some practical points 219

6.2.1

6.4.1
6.4.2
6.4.3

Solid weirs 220

6.5.1
6.5.2

Determining the height of a weir 224
Being sure of critical flow 225

213



x Contents

6.5.3  Broad-crested weirs 226
6.5.4  Crump weirs 226
6.5.5 Round-crested weirs 227
6.5.6  Drowned flow 227
6.6 Flumes 228
6.6.1  Parshall flumes 228
6.6.2  WSC flumes 228
6.6.3  Combination weir flumes 230
6.7 Discharge measurement 230
6.8 Discharge control 230
6.9  Water level control 232
6.10 Energy dissipators 233
6.10.1 Stilling basins 233
6.10.2 Drop structures 233
6.11 Siphons 235
6.11.1 Black-water siphons 235
6.11.2 Air-regulated siphons 237
6.12 Culverts 239
6.13 Some examples to test your understanding 242

7 Pumps 243

7.1 Introduction 243
7.2 Positive displacement pumps 243
7.2.1  Typical pumps 244
7.2.2  Treadle pumps 246
7.2.3  The beart: an important pump 247
7.3 Roto-dynamic pumps 248
7.3.1  Centrifugal pumps 248
7.3.2  Some pump history 250
7.3.3  Axial flow pumps 251
7.3.4  Mixed flow pumps 252
7.4 Pumping pressure 252
7.4.1  Suction lift 252
7.4.2  Delivery 254
7.4.3  Pumping head 255
7.4.4  Cavitation 256
7.5  Energy for pumping 258
7.6 Power for pumping 259
7.6.1  Efficiency 262
7.7 Roto-dynamic pump performance 265



Contents

Xi

7.8
7.9
7.10
7.11
7.12

7.13

7.14
7.15
7.16

7.7.1
7.7.2
7.7.3

Discharge and head 267
Discharge and power 267
Discharge and efficiency 268

Choosing the right kind of pump 268
Matching a centrifugal pump with a pipeline 269
Connecting pumps in series and in parallel 276
Variable speed pumps 279

Operating pumps 281

7.12.1 Centrifugal pumps 281

7.12.2 Axial flow pumps 282

Power units 282

7.13.1 Internal combustion engines 282
7.13.2 Electric motors 282

Surge in pumping mains 283

Turbines 285

Some examples to test your understanding 287

8 Water resources engineering

8.1
8.2
8.3

8.4

Harnessing the forces of nature 289
Making choices in a complex world 289
Water supply engineering 292

8.3.1
8.3.2

8.3.3

Typical water supply scheme 293
Unconventional water supplies 295
8.3.2.1 Wastewater 295

8.3.2.2  Desalination 296

Past and future water supplies 296

Wastewater treatment and disposal 297

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5

Learning to clean it up 297

In developing countries 298

Sewage is... 299

Typical water treatment works 299

Civil and chemical engineers working together 302

8.5 Irrigation engineering 302

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5

Irrigation’s beginnings 302
Irrigation today 303

Crops needs lots of water 304
Irrigation schemes 304

Methods of irrigation 307

8.5.5.1  Surface irrigation 307
8.5.5.2  Sprinkler irrigation 307

289



xii Contents

8.5.5.3  Trickle irrigation 308
8.5.5.4  Which method? 308
8.5.6  Managing irrigation systems 309
8.5.7 Irrigation: the downside 311
8.6  River engineering 311
8.6.1 Modelling rivers 314
8.6.2  Protecting the aquatic environment 314

9 Water resources planning and management 317

9.1 The water challenge 317
9.2 Some basic hydrology 319
9.2.1  The hydrological cycle 320
9.2.2  Water basins: the ideal planning unit 321
9.2.2.1 Open and closed basins 322
9.2.2.2  Approaches to basin management 323
9.2.3  Selecting ‘design years’ 323
9.2.4  ‘Easy’ and difficult’ hydrology 325
9.2.5  Hydrographs 326
9.2.6  Climate change 327
9.3 Do we have enough water? 327
9.3.1 How much water do we use? 327
9.3.2  How much do we need? 328
9.3.3 Do we have enough? 329
9.3.4  Strategies for matching supply and demand 329
9.4  Water footprints 330
9.4.1  Green and blue water 331
9.4.2  Virtual water 332
9.5  Planning water resources 333
9.5.1 Traditional approach 333
9.5.2  Integrated water resources management 334
9.5.3  Water security 335
9.6  Water myths 336
9.6.1  Myth I: Water resources are finite 337
9.6.2  Myth II: Water use and consumption are the same 337
9.6.3  Myth III: Increasing water use
efficiency saves water 338
9.6.3.1 Individual efficiency versus
basin efficiency 338
9.6.3.2  What can we conclude from this? 339
9.6.3.3  Improving ‘efficiency’ for whom? 340
9.6.3.4  Domestic water systems 340



Contents  xiii

9.6.4  Myth IV: Wastewater is the ‘new
9.6.5  Myth V: Societies should only
use water they can replace 342

10 ‘Bathtub’ hydraulics

Further reading
Index

> water resource 341

343

349
351



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com



Preface

Who wants to know about hydraulics? When | asked that question as | was
[nalising the second edition of this book in 2007, it was my 6-year-old daugh-
ter who wanted to know why water swirls as it goes down the plug hole when
she has a bath and why it always seems to go in the same direction. She is now
16 and has developed other interests! But many people from a wide range of
backgrounds are now engaging in careers linked to water and water use: in
public water supply, agriculture, irrigation, energy, environment and sustain-
able development. Those of you involved in some aspect of water management
will need a good understanding of basic hydraulics to do your job. So this
book is aimed at you. There is no need for you to become a hydraulic engineer
but you are most likely to work with engineers, and so you will need to ask
the right questions, and know when you are being given sensible answers. You
will need to understand how engineers set about the vital role of harnessing
and controlling water. This book sets out to explain how water [QWs in pipes,
channels and pumps, and how it is controlled and managed.

Most traditional hydraulics books are written by engineers for engineers
and so they tend to assume a strong background in maths and physics and
are rather off putting for those who are not from an engineering back-
ground. This book is still written by an engineer, but for many years, |
taught hydraulics to young professionals from a wide range of backgrounds
and from this | have developed what | think is a more ‘novel’ approach
to understanding hydraulics, which is simple and practical. | have tried to
avoid (most of) the maths and physics that many of you may not be so keen
on. Instead, | use lots of ‘stories’ that | have gathered over many years to help
you quickly grasp important water engineering principles and practices.

It would have been easier to write a ‘simple’, descriptive book on hydraulics
by omitting the more complex ideas of water [ow but this would have been
simplicity at the expense of reality. It would be like writing a cookbook with
recipes rather than examining why certain things happen when ingredients
are mixed together. So | have tried to cater for various tastes. At one level, this
book is descriptive and provides a qualitative understanding of hydraulics. At
another level, it is more rigorous and quantitative. These are the more mathe-
matical bits for those who wish to go that extra step. It was the physicist, Lord

XV



xvi Preface

Kelvin (1824-1907) who said that it is essential to put numbers on things if
we are really going to understand them. So if you are curious about solving
problems, | have included a number of worked examples, as well as some of
the more interesting formula derivations and put them into boxes in the text
so that you can spot them easily, and avoid them if you wish.

This is the third edition of Practical Hydraulics and rather than go deeper
into hydraulics | have, in addition to taking out the errors in early editions
that readers have kindly pointed out to me, added two new chapters which
show how engineers apply the principles in practice in the world of water.

Chapter 8 is about water resources engineering; how engineers work and
think, and how they apply their skills to water supply, wastewater treat-
ment, irrigation and to engineering our rivers and the aquatic environment.

Chapter 9 is about water resources planning and management. Since
the second edition, water has moved to the centre of world attention as
never before. This has been driven by the extremes of [adds and droughts
that we are now experiencing and of course the potential impacts of cli-
mate change. In 2015, the World Economic Forum identi [ed water as the
number one global risk facing humanity. And in 2016, the United Nations
recognised that water is at the heart of all aspects of development and sus-
tainable growth and so deserves special attention by all member nations.
So a chapter on water resources planning and management seems most
apt. But this is becoming a highly complex issue and many textbooks are
now addressing this. | have chosen to try and introduce the reader to this
important subject and highlight some of the current thinking about water
resources and the direction in which we are going. For example, do we have
enough water to sustain our way of life in the future? | have also included a
most important section at the end of this chapter which I call Water Myths.
Many people are now dabbling in water and have limited understanding of
how it behaves in practice. This can lead to poor decision-making. Is water
really [nite? What does water-use ef [Ciency actually mean? And is waste-
water really a ‘new’ water resource? All is revealed in Chapter 9.

One [nal point to bear in mind. Developing a qualitative understanding
of hydraulics and solving problems mathematically are two different skills.
Many people achieve a good understanding of water behaviour but then get
frustrated because they cannot easily apply the maths. This is a common
problem and it requires a skill that can only be acquired through practice —
hence the reason for the worked examples in the text. | have also included
a list of problems at the end of each chapter for you to try out your new
skills. It does help to have some mathematical skills — basic algebra should
be enough to get you started.

So enjoy learning about hydraulics and | hope my book enriches your
career in the world of water.

Melvyn Kay
October 2016
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Chapter |

Some basic mechanics

Water is now at the centre of world attention as never before and more pro-
fessionals from all walks of life are engaging in careers linked to water — in
public water supply and waste treatment, agriculture, irrigation, energy,
environment, amenity management and sustainable development. This
book offers an appropriate depth of understanding of basic hydraulics and
water resources engineering for those who work with civil engineers and
others in the complex world of water resources development, management
and water security. It is simple, practical and avoids (most of) the maths
in traditional textbooks. Lots of excellent ‘stories’ help readers to quickly
grasp important water principles and practices.

This third edition is broader in scope and includes new chapters on water
resources engineering and water security. Civil engineers may also [ndl it a
useful introduction to complement the more rigorous hydraulics textbooks.

1.1 INTRODUCTION

This is a reference chapter rather than one for general reading, but it will
be useful as a reminder about the physical properties of water and for those
who want to revisit some basic physics which is directly relevant to the
behaviour of water.

1.2 DIMENSIONS AND UNITS

To understand hydraulics, it is essential to put numerical values on such
things as pressure, velocity and discharge in order for them to have mean-
ing. It is not enough to say the pressure is high or the discharge is large;
some speci [cvalue needs to be given to quantify it. Also, providing just a
number is quite meaningless — it needs a unit. To say a pipeline is 6 long is
not enough. It might be 6 cm, 6 m or 6 km. So dimensions must have num-
bers and numbers must have units to give them some meaning.



2 Practical Hydraulics and Water Resources Engineering

Different units of measurement are used in different parts of the world.
The United States still uses the foot, pound and second system (known as
the FPS system), and to some extent, this system still exists in the United
Kingdom. In continental Europe, two systems are in use depending on
which branch of science you are in. There is the centimetre—gramme-
second (CGS) and also the metre—kilogramme-second (MKS) system. All
very confusing and so in 1960, after years of discussion and [nally inter-
national agreement, a new International System of Units (known as Sl sys-
tem based on the French: Systeme International d’Unites) was established.
Not everyone has switched to this, but most engineers now accept the
system and so in order to avoid any further confusion, we shall use this
throughout this book.

Sl system is not a dif [cult system to grasp and it has many advantages
over other systems. It is based mainly on the MKS system. All length mea-
surements are in metres, mass is in kilogrammes and time is in seconds
(Table 1.1). SI units are simple to use and their big advantage is they can
help to avoid much of the confusion which surrounds the use of other units.
For example, it is quite easy to confuse mass and weight in both FPS and
MKS systems. In FPS, both are measured in pounds, and in MKS, they
are measured in kilogrammes. Any mix-up between them can have serious
consequences for the design of engineering works. In the Sl system, the
difference is clear because they have different units — mass is measured in
kilogrammes, whereas weight is measured in Newtons. More about this is
explained later in Section 1.7.

Note that there is no mention of centimetres in Table 1.1. Centimetres
are part of the CGS system and play no part in hydraulics or in this text.
Millimetres are acceptable for very small measurements and kilometres for
long lengths — but not centimetres. The litre (L) is also not of [ciklly an SI
unit, though most water supply engineers talk about megalitres when refer-
ring to water volumes. So even the Sl system has its idiosyncrasies.

Every measurement must have a unit so that it has meaning. The units
chosen do not affect the quantities measured and so, for example, 1.0 m
is exactly the same as 3.28 feet. However, when solving problems, all the
measurements used must be in the same system of units. If we mix them
up in a formula (e.g. centimetres or inches instead of metres, or minutes
instead of seconds), the answer will be meaningless. Some useful units
which are derived from the basic SI units are included in Table 1.2.

Table I.] Basic Sl units of measurement

Measurement Unit Symbol
Length Metre m
Mass Kilogramme kg

Time Second s
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Table 1.2 Some useful derived units in this Sl system

Measurement Unit Measurement Unit
Area m? Force N
Volume m3 Mass density kg/m?
Velocity m/s Weight density N/m3
Acceleration m/s? Pressure N/m?
Viscosity kg/ms Momentum kgm/s
Kinematic viscosity m?/s Energy Nm/N

1.3 VELOCITY AND ACCELERATION

Most people use the terms velocity and speed to mean the same. But sci-
enti [cdlly they are different. Speed is the rate at which some object is trav-
elling and is measured in metres/second (m/s), but this does not tell you
in which direction the object is going. Velocity is speed plus direction. It
de [nés movement in a particular direction and is also measured in metres/
second (m/s). In hydraulics, it is useful to know in which direction water is
moving and so the term velocity is used instead of speed. When an object
travels a known distance in a given time, we can calculate the velocity as
follows (see example in Box 1.1):

. distance (m)
velocity = Te(S)'

Acceleration describes change in velocity. When an object’s velocity is
increasing, it is accelerating; when it is slowing down, it is decelerating.

BOX I.I EXAMPLE: CALCULATING
VELOCITY AND ACCELERATION

An object is moving along at a steady velocity and it takes 150 s to travel
100 m. Calculate the velocity.

. distance (m 100
velocity = 7() = — = 0.67 mls.
time (s) 150
Calculate the acceleration when an object starts from rest and reaches a

velocity of 1.5 m/s in 50 s.

change in velocity (m/s) _ 1.5-0
time (s) 50

= 0.03 m/s%.

acceleration =
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Acceleration is measured in metres/second/second (m/s?). If the initial
and [nal velocities are known as well as the time taken for the velocity to
change, we can calculate the acceleration as follows:

change in velocity (m/s)

acceleration (m/s?) = time (8
ime (s

1.4 FORCES

Force is not a word that we can easily describe in the same way as we can
describe some material object. Instead, we talk about a pushing or pulling
action and so we say what a force will do and not what it is. Using this
idea, if we apply a force to some stationary object it will begin to move
(Figure 1.1). If we apply it for long enough, then the object will begin to
move faster, that is, it will accelerate. The same applies to water and to
other [uids as well. It may be dif [cult to think of pushing water, but if it is
to [aw along a pipeline or a channel, a force will be needed to move it. So
one way of describing force is to say that a force causes movement.

(@ Force causes
movement

S — S —

Friction slows things down

(b)

Figure I.I Forces and friction. (a) Friction resists movement. (b) Trying to ‘swim in a
frictionless fluid’.
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1.5 FRICTION

Friction is the name we give to the force which resists movement and so
causes objects to slow down (Figure 1.1a). It is an important aspect of all
our daily lives. Without friction between our feet and the ground surface,
it would be impossible to walk, and we are reminded of this each time we
step onto ice or some smooth oily surface. We would not be able to swim if
water was frictionless. Our arms would just slide through the water and we
would not make any headway — just like children trying to ‘swim in a sea of
plastic balls’ in the playground (Figure 1.1b).

But friction can also hinder our lives. In car engines, friction between the
moving parts would quickly create heat and the engine would seize up. Oil
lubricates the surfaces and reduces the friction.

Friction also occurs between [Qwing water and the internal surface of a
pipe or the bed and sides of a channel. Indeed, much of pipe and channel
hydraulics is about predicting this friction force so that we can select the size
of pipe or channel to carry a given discharge (Chapters 4 and 5).

Friction is not only con [néd to boundaries, there is also friction inside [
ids (internal friction) which makes some [uids [aWw more easily than others.
The term viscosity is used to describe this internal friction (see Section 1.11.3).

1.6 NEWTON’S LAWS OF MOTION

Sir Isaac Newton (1642-1728) was one of the early scientists who studied
forces and how they cause movement. His work is now enshrined in three
basic rules, known as Newton’s Laws of Motion. They are very simple
laws, and at [rst sight, they appear so obvious, they seem hardly worth
writing down. But they form the basis of all our understanding of hydrau-
lics (and movement of solid objects as well) and it took the genius of
Newton to recognise their importance.

1.6.1 Law I: Forces cause objects to move

First, imagine what happens with solid objects. A block of wood placed on
a table will stay there unless you push it (i.e. a force is applied to it). Equally,
if it is moving, it will continue to move unless some force (e.g. friction)
causes it to slow down or to change direction. So forces are needed to make
objects move or to stop them. This same law applies to water.

1.6.2 Law 2: Forces cause objects to accelerate

This law builds on the [rst and describes how forces cause objects to accel-
erate (Figure 1.2a). The size of the force needed depends on the size of the
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(@) Force (N) - Mass (kg)

Force causes mass to accelerate (m/s?)

Upward force

(b) Forcesare  ER A on rocket Spray P
equal and il P 7R
oppqg,_i"gg -;;,wu_,ﬁ m] Equals - TQ‘.;_.: ;.f,’l’J Lt—usﬂ
| causing boom
,Downward thrust

A
i ) from rocket
| engine

to rotate

Figure 1.2 Newton’s laws of motion. (a) Newton’s 2nd law. (b) Examples of Newton’s
3rd law.

block (its mass) and how quickly you want it to accelerate. The larger the
block and the faster it must go, the larger must be the force. Water behaves
in the same way. Engineers want to know about the force needed to push
water along a pipeline or channel. Newton established the equation for
calculating the force, linking it to mass and acceleration (see example in
Box 1.2):

force (N) = mass (kg) x acceleration (m/s?).

The unit of force is derived from multiplying mass and acceleration, that
is, kg m/s2. But this is rather a cumbersome unit and the Sl system calls
this a Newton (N) in recognition of Sir Isaac Newton’s contribution to our
understanding of mechanics. A force of 1 N is de [néd as the force needed
to cause a mass of 1 kg to accelerate at 1 m/s2. This is not a large force. An
apple held in the palm of your hand weighs approximately 1 N — an inter-
esting point as it was supposed to have been an apple falling on Newton’s
head that set off his thoughts on forces, gravity and motion.
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BOX 1.2 EXAMPLE: CALCULATING FORCE
USING NEWTON'’S SECOND LAW

A mass of 3 kg is to be moved from rest to reach a velocity of 6 m/s in 10s.
Calculate the force needed.
First calculate acceleration:

change in velocity (m/s)
time (s)

acceleration (m/s?)

Ll = 0.6 m/s2.
10

acceleration

Use Newton’s second law:

force = mass X acceleration
=3x06=18N.

So a force of 1.8 N is needed to move a mass of 3 kg to a velocity of 6 m/s
in 10s.

Working in Newtons in engineering and hydraulics will produce some
very large numbers and so to overcome this, forces are usually measured in
kilo-Newtons (kN):

1kN = 1,000 N.

1.6.3 Law 3: For every force there is always
an equal and opposite force

To understand this simple but vitally important law, again think of the
block of wood sitting on a table (Figure 1.2b). The block exerts a force
(its weight) downwards on the table, but the table also exerts an equal but
opposite upward force on the block. If it did not, the block would drop
down from the table under the in [ugnce of gravity. So there are two forces,
exactly equal in magnitude but in opposite directions and so the block does
not move.

The same idea can be applied to moving objects as well. In earlier times,
it was thought that objects, such as arrows, were propelled forward by the
air rushing in behind them. This idea was put forward by the Greeks, but
it failed to show how an object could be propelled in a vacuum as is the
case when a rocket travels into space. What in fact happens is the down-
ward thrust of the burning fuel creates an equal and opposite thrust which
pushes the rocket upwards (Figure 1.2c). Newton helped to discredit the
Greek idea by setting up an experiment which showed that, rather than
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encouraging an arrow to [ylfaster, the air [aWw actually slowed it down
because of the friction between the arrow and the air.

Another example of Newton’s third law occurs in irrigation where rotat-
ing booms spray water over crops (Figure 1.2d). The booms are not pow-
ered by a motor, rather they are driven by the reactive force from water jets.
As water is forced out of the nozzles along the boom, it creates an equal and
opposite force on the boom which causes it to rotate. The same principle is
used to drive the rotating pipes which spray water over coke beds in trickle
[Iférs in wastewater treatment plants (see Section 8.4.4).

1.7 MASS AND WEIGHT

There is often confusion between mass and weight and this has not been
helped by past systems of units and also the way we use the terms in every-
day language. Mass and weight have very speci [Ckcienti [CImeanings and
for any study of water it is essential to have a clear understanding of the
difference between them.

Mass refers to an amount of matter or material. It is a constant value
and is measured in kilogrammes (kg). A speci [cjuantity of matter is often
referred to as an object. Hence, the use of this term in the earlier description
of Newton’s laws.

Weight is a force. It is a measure of the force of gravity on an object. On
the Earth, there are slight variations in gravity from place to place. These
variations can be very important for athletes. They can affect how fast or
how high they can jump and make that slight difference which means a
world record. But in engineering terms and for most of us, minor changes
have no effect on our daily lives.

Gravity on the Moon is much less than it is on the Earth. So if we take an
object to the Moon, its mass is still the same, but its weight is much less. As
weight is a force, it is measured in Newtons and this clearly distinguishes it
from mass which is measured in kilogrammes.

Newton’s second law enables us to calculate the weight of a given mass. In
this case, the acceleration term is the acceleration resulting from gravity. This
is the acceleration that any object experiences when it is dropped and allowed
to fall to the Earth’s surface. Objects dropped do experience different rates of
acceleration but this is because of the air resistance — hence the reason why a
feather falls more slowly than a stone. But if both were dropped at the same
time in a vacuum, they would fall (accelerate) at the same rate.

For engineering purposes, acceleration due to gravity is assumed to have
a constant value of 9.81 m/s2. This is usually referred to as the gravity
constant and denoted by the letter g. Newton’s second law provides the
link between mass and weight as follows (see example in Box 1.3):

weight (N) = mass (kg) x gravity constant (m/s?).
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BOX 1.3 EXAMPLE: CALCULATING
THE WEIGHT OF AN OBJECT

Calculate the weight of an object whose mass is 5 kg.
Use Newton’s second law:

weight

mass X gravity constant
5x9.81=49.05N.

Sometimes engineers assume the gravity constant is 10 m/s? because it
is easier to multiply by 10 and the error involved in this is not significant in
engineering terms.

In this case:

weight = 5 x [0 = 50 N.

Confusion between mass and weight occurs because of the way we use
the words in our everyday lives. When visiting a shop, we might ask for
5 kg of potatoes, which are duly weighed out on a weigh balance graduated
in kilogrammes. Costs are quoted in £ per kilogramme. But to be strictly
correct, we should ask for 50 N of potatoes as the balance is measuring the
weight of the potatoes (i.e. the force of gravity) and not their mass. But,
because gravity is constant all over the world (or nearly so for engineering
purposes), the conversion factor between mass and weight is a constant
value of 9.81. So we tend to stick with asking for kilogrammes rather than
Newtons. If shopkeepers were to change their balances to read in Newtons
to resolve a scienti [Clconfusion, engineers and scientists might be happy
but no doubt a lot of shoppers would not be so happy!

1.8 SCALAR AND VECTOR QUANTITIES

Measurements in hydraulics are either called scalar or vector quantities.
Scalar measurements only indicate magnitude. Examples of this are mass,
volume, area and length. So if there are 120 boxes in a room and they
each have a volume of 2 m3, both the number of boxes and the volume of
each are scalar quantities. Scalar quantities can be added together using
the rules of arithmetic. Thus, 5 boxes and 4 boxes can be added to make
9 boxes and 3 m and 7 m can be added to make 10 m.

Vectors have direction as well as magnitude. Examples of vectors include
force and velocity. It is just as important to know which direction forces are
pushing and water is moving as well as magnitude.
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1.8.1 Dealing with vectors

Vectors can also be added together providing their direction is taken into
account. Adding (or subtracting) two or more vectors results in another sin-
gle vector called the resultant and the vectors that make up the resultant are
called the components. If two forces, 25 and 15 N, are pushing in the same
direction then their resultant is found simply by adding the two together,
that is, 40 N (Figure 1.3a). If they are pushing in opposite directions, then
their resultant is found by subtracting them, that is, 10 N. So one direction
is considered positive and the opposite direction negative for the purposes
of combining vectors.

But forces can also be at an angle to each other and in such cases a differ-
ent way of adding or subtracting them is needed — a vector diagram is used
for this purpose. This is a diagram, drawn to a chosen scale to show both
the magnitude and the direction of the vectors and hence the magnitude of
the resultant vector. An example of how this is done is shown (Box 1.4).

Vectors can also be added and subtracted mathematically, but knowl-
edge of trigonometry is needed. For those interested in this approach, it is
described in most basic books on maths and mechanics.

(@) 25N X 15N
f = —C Positive ~ Negative
Resultant 40 N -~ =

25N 15N

Resultant
10N
N
— .25 /\/_ o Vectors cannot be

simply added together

(b) ,20mm=10kN

Scale
Q”y Tug boat
A L 12kN A
I
-/ 40°

&
8

17.5kN

Q Resultant
is 27.5 kN
Tug boat
B

Figure 1.3 Adding and subtracting vectors. (a) Calculating the resultant. (b) The tug boat
problem (Box 1.4).
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BOX 1.4 EXAMPLE: CALCULATING THE
RESULTANT FORCE USING A VECTOR DIAGRAM

Two tug boats, A and B, are pulling a large ferry boat into a harbour. Tug A
is pulling with a force of 12 kN, tug B with a force of 17.5 kN, and the angle
between the two ropes is 40° (Figure 1.3b). Calculate the resultant force and
show the direction in which the ferry boat will move.

First draw a diagram of the ferry and the two tugs. Then, assuming a scale
of 20 mm equals 10 kN (this is chosen so that the diagram fits conveniently
onto a sheet of paper) draw the 12 kN force to scale, that is, the line LA.
Next, draw the second force, 17.5 kN, to the same scale but starting the line
at A and drawing it at an angle of 40° to the first line. This ‘adds’ the second
force to the first one. The resultant force is found by joining the points L
and B. The length of the line LB in mm can be converted into kN using the
chosen scale. The ferry will be pulled in the direction of the resultant force.
So the resultant force is 27.5 kN and the ferry will move in a direction 24° to
the line of Tug A.

The triangle drawn in Figure 1.3b is the vector diagram and shows how two
forces can be added together. There are only three forces in this problem
which is called a triangle of forces. However, it is possible to add together many
forces using the same method. In such cases, the diagram is referred to as a
polygon of forces.

1.9 WORK, ENERGY AND POWER

Work, energy and power are all words used in everyday language, but in
engineering and hydraulics, they have very speci [CImeanings.

1.9.1 Work

Work refers to almost any kind of physical activity, but in engineering,

work done is about moving objects. A crane does work when it lifts a load

against the force of gravity and a train does work when it pulls carriages

along a track. But if you hold a large weight for a long period of time, you

will undoubtedly get tired and feel that you have done lot of work, but in

engineering terms, you have not done any work because nothing moved.
Work done on an object can be calculated as follows:

work done (Nm) = force (N) x distance moved by an object (m).

Work done is the product of force (N) and distance (m) so it is measured
in Newton-metres (Nm).
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1.9.2 Energy

Energy enables useful work to be done. People and animals require energy
to do work. They get this by eating food and converting it into useful energy
for work through the muscles of the body. Energy is also needed to make
water [ow and this is why reservoirs are built in mountainous areas so that
the natural energy of water can be used to make it [awv downhill to a town
or to a hydroelectric power station. Where ‘natural’ energy is not available,
water is pumped to provide the right pressures and [owv. In effect, a pump is
just a means of adding energy into a water system. This can come from an
electric motor or from a diesel or petrol engine. Solar and wind energy are
alternatives and so is energy provided by human hands or animals.

The amount of energy needed to do a job is determined by the amount of
work to be done. So that:

energy required (Nm) = force (N) x distance (m).

Energy, like work, is measured in Newton-metres (Nm), but the more
conventional measurement of energy is Watt-seconds (Ws), named after the
Scottish engineer James Watt (1736-1819) where:

1Ws =1Nm.

But this is a very small quantity for engineering work and so the pre-
ferred unit is Watt-hours (Wh) or kilowatt-hours (KWh). To change Ws to
Wh, multiply both sides of the above equation by 3,600 to change seconds
to hours:

1 Wh = 3,600 Nm.

Now multiply both sides by 1,000 to change Wh to kWh:

1kwh = 3,600,000 Nm
= 3,600 kNm.

While engineers like to measure energy in kilowatt-hours (kWh), scien-
tists tend to measure energy in Joules (J). This is recognition of the con-
tribution made by the English physicist, James Joule (1818-1889) to our
understanding of energy, in particular the conversion of mechanical energy
to heat energy (see Section 1.9.3).

So for the record:

1J=1Nm.

However, to avoid using too many units, we will stay with kilowatt-
hours in this text. Some everyday examples of energy use include:
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e A farmer working in the [eld uses 0.2-0.3 kWh every day
* An electric desk fan uses 0.3 kwh every hour
« An air conditioner uses 1 kWh every hour

Note that it is important to specify the time period (e.g. every hour, every
day) over which the energy is used. Energy used for pumping water is dis-
cussed more fully in Chapter 7.

1.9.3 Changing energy

One of the useful things about energy is that it can be changed from one
form of energy to another. People and animals are able to convert food into
useful energy to drive their muscles. The farmer using 0.2 kWh every day
must eat enough food each day to supply this energy need otherwise he
would not be able to work properly.

In a diesel pumping set, the form of energy changes several times before
it gets to the water. Chemical energy contained within the fuel (e.g. diesel
oil) is burnt in a diesel engine to produce mechanical energy. This is con-
verted to useful water energy via the drive shaft and pump (Figure 1.4). So
a pumping unit is both an energy converter as well as a devise for adding
energy into a water system.

Changing energy from one form to another is not always very ef [ciknt.
Friction between the moving parts absorbs energy and this is converted
into heat energy and is usually lost into the atmosphere. Such losses can
be high and also costly as they waste fuel. One of the criteria used to
match pumps and power units is to ensure that as much energy as pos-
sible goes into the water and maximises the ef [Ciency of energy use (see
Chapter 7).

Discharge

Fuel tank Engine

Chemical ——= Mechanical —— Water
energy l energy l energy

Heat energy losses

Figure 1.4 Changing energy from one form to another.
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Slow use — low power
Energy
Fast use — high power

Figure 1.5 Power is the rate of energy use.

1.9.4 Power

Power is often confused with the term energy. They are related but they
have different meanings. While energy is the capacity to do useful work,
power is the rate at which the energy is used (Figure 1.5).

And so:

energy (kwh)

power (kW) = time (h)

Examples of power requirements: a typical room air conditioner has
power rating of 1 kwW. This means that it consumes 1 kWh of energy every
hour it is working. A small electric radiator has a rating of 1-2 kW, and
the average person walking up and down stairs has a power requirement
of about 70 W.

Energy requirements are sometimes calculated from knowing the equip-
ment power rating and the time over which it is used rather than trying to
calculate it from the work done. In this case:

energy (kWh) = power (kW) x time (h).

Horsepower (HP) is still a very commonly used measure of power, but
it is not used in this book, as it is not an Sl unit. However, for comparison
purposes:

1kW = 1.36 HP.

Power used for pumping water is discussed more fully in Chapter 7.

1.10 MOMENTUM

Applying a force to a mass causes it to accelerate (Newton’s second law)
and the effect of this is to cause a change in velocity. This means there is a
link between mass and velocity and this is called momentum. Momentum
is another scienti [CIterm that is used in everyday language to describe
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something that is moving — we say that some object or a football game has
momentum if it is moving along and making good progress. In engineering
terms, it has a speci [Cmeaning and it can be calculated by multiplying the
mass and the velocity together:

momentum (kgm/s) = mass (kg) x velocity (m/s).

Note that the unit of momentum are a combination of those of velocity
and mass.

The following example demonstrates the links between force, mass and
velocity. Two blocks, 2 and 10 kg mass, are being pushed along by an iden-
tical force of 15 N for 4 s (Figure 1.6a). To keep the example simple, assume
there is no friction.

To calculate the momentum of the 2 kg block, [rst calculate the accelera-
tion using Newton’s second law and then calculate the [nal velocity after
the force is applied for 4 s.

force = mass x acceleration
15=2xf
f =7.5m/s%.

For every second the force is applied, the block will move faster by
7.5 m/s. After 4 s, it will reach a velocity of

4 x75 =30mls.

Calculate the momentum of the 2 kg block:

momentum = mass x velocity
2 x 30 = 60 kgml/s.

Now calculate the momentum for the 10 kg block using the same
approach:

force = mass x acceleration
15 =10 x f.

And so

f =15 m/s%.
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(@) 15N
for4s
| Mass Momentum = 60 kgm/s
2kg
15N
for4 s“_l Mass )
—_ 10kg Momentum = 60 kgm/s
(b) Momentum change produces

force on reducer

>

Force

Force _Force
C i <——
(©) Astronaut moving away from ship
a)
-
—_— =
E [row tool belt
4
Astronaut moves
back to ship
(d)
Q “
¥ O Rebounding
o . balls transfer
momentum

Figure 1.6 Understanding momentum. (a) Momentum for solid objects. (b) Momentum
change produces forces. (c) The astronaut’s problem. (d) Rebounding balls.
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For every second the force is applied, the block will move faster by
1.5 m/s. After 4 s, it will reach a velocity of

4 x15 =6m/s.

Now calculate momentum of the 10 kg block:

momentum = mass x velocity
10 x 6 = 60 kgml/s.

momentum

The result is that the same force applied over the same time period to
very different blocks produces the same momentum.
Now multiply the force by the time:

force x time = 15 x 4 = 60 Ns.

But the unit for Newtons can also be written as kgm/s? and so:

force x time = 60 kgm/s.

This is equal to the momentum and has the same units.

Multiplying force by time is called the impulse and this is equal to the
momentum it creates.

And so we can now write:

impulse = momentum.

And

force x time = mass x velocity.

This is more commonly written as

impulse = change of momentum.

Writing change in momentum is more appropriate because an object
need not be starting from rest, it may already be moving when it is pushed.
In such cases, the object will have some momentum and an impulse would
increase (change) it. Also a momentum change need not be just a change
in velocity, it can also be a change in mass. If a lorry loses some of its load
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when travelling at speed, its mass will change. If momentum is maintained,
then the lorry will speed up as a result of the smaller mass.
The equation for momentum change becomes

force x time = mass x change in velocity.

This equation works well for solid blocks, but more steps are needed
to apply it to [owing water. Here, we want to look at the rate at which
the mass of water is [aWving rather than thinking of the [awv as a series of
discrete solid blocks of water. To do this, we [Tst divide both sides of the
equation by time, thus:

ma
force =

ss . .
x change in velocity.
e

Mass divided by time is the mass [aWv in kg/s and so the equation becomes:

force (N) = mass flow (kg/s) x change in velocity (m/s).

So applying a force to water, such as with a pump or a turbine, we can
create a change in momentum which may increase the mass [OWw (essen-
tially the discharge) or a change in the water velocity. Equally if we change
the momentum by changing the velocity or the [awv, such as water [QWv-
ing around a pipe bend or through a reducer, it creates a force as a direct
result of those changes (Figure 1.6b). Engineers will need to make sure
these forces are well contained within the pipe system.

Momentum is about forces and velocities, which are vectors, and so the
direction in which momentum changes is also important. In the above
example (Figure 1.6b), the force is pushing from left to right as the [Qwv is
from left to right. This is assumed to be the positive direction. Any force
or movement from right to left would be considered negative. So if several
forces are involved, they can be added or subtracted to [ndl a single resul-
tant force. Another important point to note is that Newton’s third law
also applies to momentum. Figure 1.6b shows the force of the reducer on
the water and so the force is in the negative direction. Equally it could be
drawn in the opposite direction, that is, the positive direction from right to
left when it would be the force of the water on the reducer. The two forces
are, of course, equal and opposite.

The application of this idea to water [aWw is developed further in
Section 4.11.

Those not so familiar with Newton’s laws might [ndl momentum more
dif Ccult to deal with than other aspects of hydraulics. To help understand
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the concept, here are two interesting examples of momentum change which
might help.

1.10.1 The astronaut’s problem

An astronaut has just completed a repair job on his spaceship and secures
his tools on his belt. He then pushes off from the ship to drift in space
only to [nd that his lifeline has come undone and he is drifting further
and further away from his ship (Figure 1.6c). How can he get back? One
solution is for him to take off his tool belt and throw it as hard as he can in
the direction he is travelling — away from the ship. The reaction from this
will be to propel him in the opposite direction back to his spaceship. The
momentum created by throwing the tool belt in one direction (i.e. mass of
tool belt multiplied by velocity of tool belt) will be matched by a momen-
tum change in the opposite direction (i.e. mass of spaceman multiplied by
velocity of spaceman). His mass is much larger than the tool belt and so
his velocity will be smaller, but at least he should now be drifting in the
right direction!

1.10.2 Rebounding balls

Another interesting example of momentum change occurs when several
balls are dropped onto the ground together (Figure 1.6d). If dropped indi-
vidually, they rebound to a modest height, less than the height from which
they were dropped. But if several balls, each one slightly smaller than the
previous one, are now dropped together, one on top of the other, the top
one will shoot upwards at an alarming velocity to a height far greater
than any of the individual balls. The reason for this is momentum change.
The [rst, larger ball rebounds on impact with the ground and immedi-
ately hits the second ball and the second ball hits the third and so on.
Each ball transfers its momentum to the next one. As the mass of each
ball is smaller, the momentum change increases the velocity. If it was pos-
sible to drop eight balls onto each other in this way, it is estimated that the
top ball would reach a velocity of 10,000 m/s. This would be fast enough
to put it into orbit if it did not vaporise from the heat created by friction
as it went through the Earth’s atmosphere! Eight balls may be dif [cillt to
manage, but even with two or three, the effect is quite dramatic. Try it
for yourself.

I.11 PROPERTIES OF WATER

The following physical properties of water will be a useful reference for the
later chapters.
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1.11.1 Density

When dealing with solid objects, their mass and weight are important, but
when dealing with [wids, it is much more useful to know about their den-
sity. There are two ways of expressing density: mass density and weight
density. Mass density is the mass of one cubic metre of a material and, like
mass, it is a [x&d value. For example, the mass density of air is 1.29 kg/ms3,
steel is 7,800 kg/m? and gold is 19,300 kg/mé.

Mass density is determined by dividing the mass of some object by its
volume.

. mass (kg)

mass density (kg/m®) = —— 37

ity (kg/m’) volume (m?)

Mass density is usually denoted by the Greek letter p (rho).
One cubic metre of water has a mass of 1,000 kg and so:

p = 1,000 kg/m®.

Density can also be written in terms of weight as well as mass. This
is referred to as weight density, but engineers often use the term specific
weight (w). This is the weight of one cubic metre of water.

Newton’s second law is used to link mass and weight:

weight density (kN/m3) = mass density (kg/m?) x gravity constant (m/s?)
pg-

For water:

weight density = 1,000 x 9.81
= 9,810 N/m® or (9.81 kN/m®).

Often engineers round-off weight density to 10 kN/m?3 for ease of use.
This will make very little difference to the calculations for designing
hydraulic works. Note that the equation for weight density is applicable to
all [uids and not just water. It can be used to [nd the weight density of any
[uid, provided the mass density is known.

Engineers generally use the term speci[Clweight in their calculations,
whereas scientists tend to use the term pg to describe the weight density.
Either approach is acceptable, but for clarity, pg is used throughout this
book.
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1.11.2 Relative density or specific gravity

Sometimes it is more convenient to use relative density rather than just den-
sity. It is more commonly referred to as specific gravity and is the ratio of the
density of a material or [uid to that of some standard density, usually water.
It can be written both in terms of the mass density and the weight density.

density of an object (kg/m®)

specific gravity (SG) = density of water (kg/m?)

Speci [cgravity has no dimensions. As the volume is 1 m3 for both the
object and water, then another way of writing this formula is in terms of
weight:

weight of an object
weight of an equal volume of water

specific gravity =

Some useful speci [Chravity values are included in Table 1.3.

The density of any other [uid (or any solid object) can be calculated by
knowing the speci [chravity. The density of mercury, for example, can be
calculated from its speci [c_ravity:

density of mercury (kg/m®)
density of water (kg/m?)

specific gravity of mercury (SG) =

Turning this equation around:

mass density of mercury = SG of mercury x mass density of water
=13.6 x 1,000
= 13,600 kg/m®.

Table 1.3 Some values of specific gravity

Material/fluid  Specific gravity Comments

Water | All other specific gravity measurements are made
relative to that of water

Oil 0.9 Less than 1.0 and so it floats on water

Sand/silt 2.65 Important in sediment transport problems

Mercury 13.6 Fluid used in manometers for measuring pressure
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The mass density of mercury is 13.6 times greater than that of water.
Archimedes used this idea of speci [Cravity in his famous principle, which
is discussed in Section 2.12.

1.11.3 Viscosity

This is the friction force which exists inside a [uid. It is sometimes referred
to as dynamic viscosity. To understand this property, imagine a [uid [ow-
ing along a pipe as a set of thin layers, each able to slide over each other
(Figure 1.7a). The layer nearest to the boundary actually sticks to it and is
not moving. The next layer slides over this [rst layer but is slowed down by
friction between them. The third layer moves faster but is slowed by fric-
tion with the second layer. This effect continues across the pipe affecting
all the [awv with layers in the middle of the [QWwv moving fastest. It is similar
to a pack of cards when you slide your hand across the pack (Figure 1.7b).
The friction between the layers of [uid is known as the viscosity and the
effect on the [awv is referred to as the boundary layer which is described in
more detail in Section 3.9.3. Some [uids, such as water, have a low viscos-
ity and this means the friction between the layers is low and its in [uénce is
not so evident when water is [aWwing. In contrast, engine oils have a much
higher viscosity and they seem to [aw more slowly. This is because the vis-
cosity (internal friction) is much greater.

One way to see viscosity at work is to pull out a spoon from a jar of
honey. Some of the honey sticks to the spoon and some sticks to the jar,
demonstrating that [uid sticks to the boundaries. There is also resistance
when you pull out the spoon and this is due to the viscosity. This effect is
the same for all [uids, including water, but it is not so obvious as in the
honey jar.

Viscosity of water is usually ignored in most hydraulic designs. To take it
into account not only complicates the analysis but also has little or no effect
on the [nal design because the forces of viscosity are usually very small
relative to other forces involved. When forces of viscosity are ignored, the
[uid is described as an ideal fluid.

(@) Slow near (b)
boundary

Faster in
midstream

Figure 1.7 Understanding viscosity. (a) Flow in a pipe as a set of thin layers. (b) Flow is
similar to a pack of cards.
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Another interesting feature which honey demonstrates is that the resis-
tance changes depending on how quickly you pull out the spoon. The faster
you pull the spoon, the greater the resistance. Newton found that for most
[uids the resistance was proportional to how fast you tried to move the
liquid. So resistance increases directly with the velocity of the [uid. Fluids
which conform to this rule are known as Newtonian fluids.

Some modern [uids have different viscous properties and are called non-
Newtonian fluids. One good example is tomato ketchup. When left on the
shelf, it is a highly viscous [uid which does not [aWv easily from the bot-
tle. Sometimes you can turn a full bottle upside down and nothing comes
out. But shake it vigorously (in scienti [cCterms this means applying a shear
force), its viscosity suddenly reduces and the ketchup [awvs easily from the
bottle. In other words, applying a force to a [uid can change its viscous
properties often to our advantage.

Although viscosity is often ignored in hydraulics, life would be dif [ciilt
without it. It would be a world without friction (see Section 1.5). The spoon
in the honey jar would come out clean and it would be dif [cdlt to get the
honey out of the jar. Rivers rely on viscosity to slow down [aWvs otherwise
they would continue to accelerate under the in[uénce of gravity to very
high speeds. The Mississippi river would reach a speed of over 300 km/h as
its [aw gradually descends 450 m towards the sea if water had no viscos-
ity. Pumps would not work because impellers would not be able to grip the
water and swimmers would not be able to propel themselves through the
water for the same reason (see also Box 1.5).

Viscosity is usually denoted by the Greek letter p (mu).

For water:

i = 0.00114 kg/ms at a temperature of 15°C
= 1.14 x 1072 kg/ms.

Viscosity of all Newtonian [uids is in [uénced by temperature. Viscosity
decreases, oils are ‘thinner’, when temperature increases.

BOX I.5 VISCOSITY CAN TELL YOU IF
AN EGG IS HARD OR SOFT BOILED

A simple test is to spin a boiled egg on the kitchen worktop, stop it suddenly,
and let go. If it stays still, then it is hard boiled, if it starts to rotate on its own,
it is soft boiled (Figure 1.8).

When the egg is hard boiled, it is solid throughout and so it stays still when
you stop it spinning. When is it soft boiled, the liquid inside keeps moving
even though you have stopped the egg from spinning. It is the viscous forces
which eventually slows the liquid and brings it to a stop.




24 Practical Hydraulics and Water Resources Engineering

Figure 1.8 Spin the egg to check if it’s soft boiled.

1.11.4 Kinematic viscosity

In many hydraulic calculations, viscosity and mass density go together and
so they are often combined into a term known as the kinematic viscosity. It
is denoted by the Greek letter v (nu) and is calculated as follows:

viscosity (L)

kinematic viscosity (v) = - .
density (p)

For water:
v = 114 x 10°° m?/s at a temperature of 15°C.
Sometimes kinematic viscosity is measured in Stokes in recognition of
the work of Sir George Stokes (1819-1903) who helped to develop a fuller

understanding of the role of viscosity in [uids.

10* Stokes = 1 m?/s.
For water:

v = 1.14 x 1072 Stokes.

1.11.5 Surface tension

An ordinary steel sewing needle can be made to [oat on water if it is placed
there very carefully. A close examination of the water surface around the
needle shows that it appears to be sitting in a slight depression and the
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water behaves as if it is covered with an elastic skin supporting the needle.
This [uid property is known as surface tension. It is a force but it is very
small and is normally expressed in terms of force per unit length across the
[aid surface.

For water:

surface tension = 0.51 N/m at a temperature of 20°C.

This force is ignored in hydraulic calculations, but in hydraulic model-
ling, where small-scale physical models are constructed in a laboratory to
work out [aw behaviour for large complex in harbours and rivers, surface
tension may well in [uénce the behaviour of the model because of the small
water depths and [aws involved.

1.11.6 Compressibility

It is easy to imagine a gas being compressible and to some extent some solid
materials such as rubber. In fact, all materials are compressible; a property
which we call elasticiry. Water is 100 times more compressible than steel!
The compressibility of water is important in many aspects of hydraulics.
Take for example the task of closing a sluice valve to stop water [OWing
along a pipeline. If water was incompressible, it would be like trying to
stop a 40-ton truck. The water column would be a solid mass running into
the valve and the force of impact would be signi [cdnt. Fortunately, water is
compressible, and as it impacts the valve, it compresses like a spring and the
energy of the impact is absorbed. But compressing water in this way leads
to another problem known as water hammer which is discussed more fully
in Section 4.14.
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Chapter 2

Woater standing still
Hydrostatics

2.1 INTRODUCTION

Hydrostatics is the study of water when it is not moving; it is standing still.
It is important to civil engineers who are designing water storage tanks
and dams. They want to work out the forces that water creates in order to
build reservoirs and dams that can resist them. Naval architects designing
submarines want to understand and resist the pressures created when they
go deep under the sea. The answers come from understanding hydrostatics.
The science is simple both in concept and in practice. Indeed, the theory
is well established and little has changed since Archimedes (287-212 bc)
worked it out over 2000 years ago.

2.2 PRESSURE

The term pressure is used to describe the force that water exerts on each
square metre of some object submerged in water, that is, force per unit area.
It may be the bottom of a tank, the side of a dam, a ship or a submerged
submarine. It is calculated as follows:

force
pressure = .
area

Introducing the units of measurement

force (kN)
re (kN/m?) = ——— 2,
pressure ( ) area (m?)

Force is in kilo-Newtons (kN), area is in square metres (m?) and so pres-
sure is measured in KN/m2. Sometimes pressure is measured in Pascals (Pa)
in recognition of Blaise Pascal (1620-1662) who clari [ed much of modern

27
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day thinking about pressure and barometers for measuring atmospheric
pressure.

1Pa=1N/ma2.

One Pascal is a very small quantity and so kilo-Pascals are often used so
that

1 kPa =1 kN/mZ.

Although it is in order to use Pascals, KN/m? is the measure of pressure
that engineers tend to use and so this is used throughout this text (see
example of calculating pressure in Box 2.1).

2.3 FORCE AND PRESSURE ARE DIFFERENT

Force and pressure are terms that are often confused. The difference
between them is best illustrated by an example:

If an elephant or a woman in a high-heel (stiletto) shoe stood on your
foot — which is likely to cause the least damage to your foot? We suggest
you choose the elephant! To understand this is to appreciate the important
difference between force and pressure.

The weight of the elephant is obviously greater than that of the woman
but the pressure under the elephant’s foot is much less than that under the
high-heel shoe (see Box 2.2). The woman’s weight (force) is small in com-
parison to that of the elephant, but the area of the shoe heel is very small
and so the pressure is extremely high. So, the high-heel shoe is likely to
cause you more pain than the elephant. This is why high-heel shoes, par-
ticularly those with a very [né heel, are sometimes banned indoors as they
can so easily punch holes in [adring and furniture!

There are many other examples which highlight the difference.
Agricultural tractors often use wide ([oatation) tyres to spread their load
and reduce soil compaction. Military tanks use caterpillar tracks to spread
the load to avoid getting bogged down in muddy conditions. Eskimos use
shoes shaped like tennis rackets to avoid sinking into the soft snow.

2.4 PRESSURE AND DEPTH

The pressure on some object under water is determined by the depth of
water above it. So, the deeper the object is below the surface, the higher
will be the pressure. The pressure can be calculated using the pressure-head
equation:

p =pgh,
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BOX 2.1 EXAMPLE: CALCULATING PRESSURE

Calculate the pressure on a flat plate 3 m X 2 m when a mass of 50 kg rests
on it. Calculate the pressure when the plate is reduced to I.5mXx2m
(Figure 2.1).

First, calculate the weight on the plate. Remember weight is a force.

mass on plate = 50 kg
mass X gravity constant

50 x 9.81 = 490.5N

weight on the plate

plate area = 3 x 2 = 6 m?
_ force _ 490.5
pressure on plate = =
area 6
= 8175 N/m’.

When the plate is reduced to I.5mx2m

plate area = .5 x 2 = 3m’

4905 _ 163.5 N/m?.

pressure on plate

Note that the mass and the weight remain the same in each case. But the
areas of the plate are different and so the pressures are also different.

Tk

Figure 2.1 Different areas produce different pressures for the same force.
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BOX 2.2 EXAMPLE: THE ELEPHANT’S
FOOT AND THE WOMAN'’S SHOE

An elephant has a mass of 5,000 kg and its feet are 0.3 m in diameter. A woman

has a mass of 60 kg and her shoe heel has a diameter of 0.0] m. Which produces

the greater pressure — the elephant’s foot or woman’s shoe heel (Figure 2.2)?
First, calculate the pressure under the elephant’s foot

elephant’s mass = 5,000 kg
elephant’s weight = 5,000 x 9.81 = 49 kN

weight on each foot = ? =12.25kN
2 2
foot area = mdt_ mo3 _ 0.07 m?
4 4
pressure under foot = force _ 1225 _ 175 kN/m?.
area 0.07

Now, calculate the pressure under the woman’s shoe heel

woman’s mass = 60 kg
woman’s weight = 589 N = 0.59 kN

weight on each foot = 059 = 0.29kN
2 2
area of shoe heel = md’ _ moor _ 0.0001 m?
4 4
pressure under heel = force _ 029 _ 2,900 kN/m?.
area 0.0001

The pressure under the woman’s heel is 16 times greater than under the
elephant’s foot! So beware who treads on your toes.

Force = 12.25 kN Force = 0.29 kN
Pressure = 175 kN/mZO/ Pressure = 2,900 kN/m?

Figure 2.2 Which produces the greater pressure!?
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where p is the pressure (N/m?2), p the mass density of water (kg/m?), g the
gravity constant (m/s?) and 4 the depth of water (m).

This equation works for all [uids and not just water, provided of course
that the correct value of density is used for the [uid concerned.

If you would like to see how the pressure-head equation is derived look
in Box 2.3.

BOX 2.3 DERIVATION: PRESSURE-HEAD EQUATION

Imagine a tank of water of depth h and a cross-sectional area a (Figure 2.3).
The weight of water on the bottom of the tank (remember that weight is a
force and is acting downwards) is balanced by an upward force from the bot-
tom of the tank supporting the water (Newton’s third law). The pressure-
head equation is derived by calculating these two forces and putting them
equal to each other.

First, calculate the downward force. This is the weight of water. To do this,
first calculate the volume and then the weight using the density

volume of water = cross sectional area x depth.
=axh

And so

weight of water in tank = volume X density X gravity constant.

axhxpxg

This is the downward force of the water {. Next, calculate the supporting
(upward) force from the base
supporting force = pressure X area.

:an

Weight of Depth =h
water

Pressure = pgh

Supporting force
from bottom of tank

Area=a

Figure 2.3 Calculating the force on the bottom of a tank.
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Now, put these two forces equal to each other
pxa=axhxpxg,

The area a cancels out from both sides of the equation and so we are left with
p = pgh.

In words

pressure (N/m?) = mass density (kg/m?) X gravity constant (9.81 m/s?)
x depth of water (m).

This is the pressure-head equation which links pressure with the depth of
water. It shows that pressure increases directly as the depth increases. Note
that it is completely independent of the shape of the tank or the area of base.

BOX 2.4 EXAMPLE: CALCULATING PRESSURE
AND FORCE ON THE BASE OF A WATER TANK

A rectangular tank of water is 3 m deep. If the base measures 3 m by 2 m,
calculate the pressure and force on the base of the tank (Figure 2.4).

Use the pressure-head equation

p = pgh
= 1,000 x 9.81 x 3.0 = 29,430 N/m? = 29.43 kN/m?>.

Water depth
3.0m

Tank
base

3.0m
20m

Figure 2.4 Calculating force and pressure on the base of a tank.
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Calculate the force on the tank base using the pressure and the area

force = pressure X area
basearea = 3 x2 = 6m?
force = 29.43 x 6 = 176.6 kN.

2.5 PRESSURE IS SAME IN ALL DIRECTIONS

Although in the example in Box 2.4, the pressure is used to calculate the
downward force on the tank base, pressure does not in fact have a speci [c]
direction — it pushes in all directions. To understand this, imagine a cube
in the water (Figure 2.5). The water pressure pushes on all sides of the cube
and not just on the top. If the cube was very small, then the pressure on all
six faces would be almost the same. If the cube gets smaller and smaller
until it almost disappears to a point, it becomes clear that zhe pressure at
a point in the water is the same in all directions. So, the pressure pushes in
all directions and not just vertically. This idea is important for designing
dams because it is the horizontal action of pressure which pushes on a dam
and which must be resisted if the dam is not to fail. Note also that the
‘pressures’ in Figure 2.5 are drawn pushing inward. But they could equally
have been drawn pushing outward to make the same argument — remember
Newton’s third law.

Water surface

Pressure pushes
in on all sides

rf;t\l/ﬁb
As cube gets smaller

? Pressure at a point
P is the same in all

£t directions

Figure 2.5 Pressure is the same in all directions.
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2.6 HYDROSTATIC PARADOX

It is often assumed that the size of a water tank or its shape in [uénces pres-
sure but this is not the case (Figure 2.6). It does not matter if the water is in
a large tank or in a narrow tube. The pressure-head equation tells us that
water depth is the only variable that determines the pressure. So, the base
area neither has effect on the pressure nor does the amount of water in the
tank. What is different of course is the force on the base of different con-
tainers. The force on the base of each tank is equal to the weight of water
in each of the containers. But if the depth of water in each is the same then
the pressure will always be the same.

2.6.1 Bucket problem

The Dutch mathematician Simon Stevin (1548-1620) made a similar point
by showing that the force on the base of a tank depended only on the area
of the base and the vertical depth of water (the pressure) — and not the
weight of water in the container. This is well demonstrated using three dif-
ferent shaped buckets but each with the same base area and the same depth
of water in them (Figure 2.7).

The weight of water in each bucket is clearly different and a casual
observer might assume from this that the force on the base of each bucket
will also be different; the force on the base of bucket b being greater than
bucket ¢ and the force on bucket ¢ being less than in bucket 4. But thinking
about this in hydraulic terms, the pressure-head equation tells us otherwise.
In fact, it predicts that the force on the base is the same in each bucket, equal
to the area of the base multiplied by the pressure on the base, which is only
a function of the water depth. As the depth in each bucket is the same, the
force on the base of each bucket is the same regardless of whether the sides
are vertical or inclined inwards or outwards. In bucket a, with vertical sides,
the force does, in fact, equal the weight of water in the bucket. But when
the sides slope outwards, as in bucket b, the force is less than the weight of
water and when the sides slope inwards, as in bucket ¢, the force on the base
is greater than the weight of water. All this seems rather absurd but it is true.

Figure 2.6 Pressure is the same at the base of all the containers.
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«— Pressure due to
thrust of wall
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weight of water

Figure 2.7 Bucket problem.

The key to the paradox lies with the fact that the pressure at a point in
the water is the same in all directions (see Section 2.5). The water not only
pushes down onto the base but also pushes on the sides of the container
as well. So, when the sides slope inwards (bucket ¢), the water pushes out-
wards and also upwards. Newton’s second law says that this produces a
corresponding downward force on the water and this is transmitted to the
base adding to the force due to the weight of the water. In fact, the total
vertical force on the walls and base (the force on the base minus the upward
force on the walls) is exactly equal to the weight of water in the bucket! The
same argument can be applied to bucket b. The water pushes on the sides of
the tank and in this case pushes outwards and downwards. Newton’s sec-
ond law says that this produces a corresponding upward force on the water
and this is transmitted to the base reducing the force due to the weight of
the water. So, in this case the force on the base is less than the weight of the
water in the bucket.

Clear? If so then you are well on your way not only to understand the
important difference between force and pressure but also to appreciate the
signi [cdnce of Newton’s contribution to our understanding of the way in
which our water world works.

2.6.2 Balloon problem

One more ‘absurdity’ to test your understanding. Two identical balloons
are connected to a manifold and blown up independently so that one is
larger than the other (Figure 2.8). When valve 3 is closed and valves 1 and
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Figure 2.8 Balloon problem.

2 are opened, the air can [oWv between the balloons to equalise the air pres-
sure. The question is — What happens to the balloons?

You might expect the air to [aw from the larger balloon to the smaller
one, so they both become the same size. But this is not what happens. The
larger balloon, in fact, gets larger and the smaller balloon gets smaller. The
reason for this is again explained by the difference between pressure and
force. The larger balloon has a much greater surface area than the smaller
one and so the pressure inside the larger balloon is less than in the smaller
balloon. So, when the two balloons are connected together by opening the
valves 1 and 2, the air [awvs from the smaller balloon into the larger bal-
loon thus making the larger balloon even larger and the smaller balloon
even smaller.

Do not confuse size with pressure. If you are not convinced or you are
still confused, try the balloon experiment by making up a small manifold
using some plastic pipes and laboratory taps, and see for yourself.

2.7 PRESSURE HEAD

Engineers often refer to pressure in terms of metres of water rather than
as a pressure in KN/m2. Referring back to the pressure calculation in
Box 2.4, instead of saying the pressure is 29.43 kN/m?, we can say the
pressure is ‘3 m head of water’. This is because of the unique relationship
between the pressure and the water depth (p = pgh). It is called the pres-
sure head or just head and is measured in metres. It is the water depth
b referred to in the pressure-head equation. Both ways of stating the
pressure are correct and one can easily be converted to the other using
pressure-head equation.
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BOX 2.5 EXAMPLE: CALCULATING
PRESSURE HEAD IN MERCURY

Building on the example in Box 2.4, calculate the depth of mercury needed in
the tank to produce the same pressure as 3 m depth of water (29.43 kN/m?).
Specific gravity (SG) of mercury is 13.6.

First, calculate the density of mercury

p (mercury) = p (water) X SG (mercury)
=1,000 x 13.6
= 13,600 kg/m’.

Use pressure-head equation to calculate the head of mercury
p = pgh,
where p is now the density of mercury and h is the depth

29,430 = 13,600 x 9.81 x h
h = 0.22 m of mercury.

So, the depth of mercury required to create the same pressure as 3 m of
water is only 0.22 m. This is because mercury is much denser than water.

Engineers prefer to use head measurements because, as will be seen later,
differences in ground level can affect the pressure in a pipeline. It is an
easy matter to add (or subtract) changes in ground level to pressure values
because they both have the same units.

A word of warning though. When head is measured in metres it is impor-
tant to say what the liquid is — ‘3 m head of water’ will be a very different
pressure to ‘3 m head of mercury’. This is because the density term p is
different. So, the rule is — say what liquid is being used to measure the pres-
sure. See the worked example in Box 2.5.

2.8 ATMOSPHERIC PRESSURE

The pressure of the atmosphere is all around us pressing on our bodies.
Although, we often talk about things being ‘as light as air’ when there is a
large depth of air, it creates a high pressure of approximately 100 kN/m?
on the Earth’s surface — the equivalent of 10 m head of water. The average
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person has a skin area of 2 m?, and so the force acting on each of us from
the air around us is approximately 200 kN (the equivalent of 200,000
apples or 20 tons). A very large force indeed! Fortunately, there is an equal
and opposite pressure from within our bodies that balances the air pressure
and so we feel no effect (Newton’s third law).

At high altitudes, atmospheric pressure is less than at the Earth’s surface,
and some people suffer from nose bleeds due to their blood pressure being
much higher than the surrounding atmosphere. We can also detect sudden
changes in air pressure. For instance, when we [ylin an aeroplane, even
though the cabin is pressurised, our ears pop as our bodies adjust to changes
in the cabin pressure. If the cabin pressure system failed suddenly, removing
one side of this pressure balance then the result could be catastrophic. Inert
gases such as nitrogen, which are normally dissolved in our body [uids and
tissues, would rapidly start to form gas bubbles which can result in sensory
failure, paralysis and death. Deep sea divers are well aware of this rapid
pressure change problem, known as the bends, and they make sure that they
return to the surface slowly so that their bodies have enough time to adjust
to the changing pressure. A good practical demonstration of what happens
can be seen when you open a [zzy drink bottle. When the cap is removed
from the bottle, gas is heard escaping, and bubbles can be seen forming in
the drink. This is carbon dioxide gas coming out of the solution as a result
of the sudden pressure drop inside the bottle as it equalises with the pressure
of the atmosphere.

It was in the seventeenth century that scientists, such as Evangelista
Torricelli (1608-1647), a pupil of Galileo Galilei (1564-1642), began to
understand about atmospheric pressure and to study the importance of vac-
uums — the empty space when all the air is removed. Scientists previously
explained atmospheric effects by saying that nature abbhors a vacuum. This
meant that if the air is sucked out of a bottle, it will immediately [Ollby
sucking air back in again when it is opened to the atmosphere. But Galileo
had already observed that a suction pump could not lift water more than
10 m, so there appeared to be a limit to this abhorrence. Today, we know
that it is not the vacuum in the bottle that sucks in the air but the outside
air pressure that pushes the air in to [Ithe vacuum. The end result is the
same (i.e. the bottle is [IIéd with air) but the mechanism is quite different
and has implications for suction pumps.

Suction pumps do not ‘suck’ up water as is commonly thought. It is the
atmospheric pressure on the surface of the water that pushes water into a
pump when the air inside is removed to create a vacuum — a process known
as ‘priming’. The implication of this is that the atmospheric pressure (which
is 10 m head of water) puts a limit on how high a pump can be located
above the water surface and still work. In practice, the limit is a lot lower
than this, but more about this is given in Section 7.4. Siphons too rely on
atmospheric pressure in a similar way (Section 4.7).
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Atmospheric pressure does vary over the Earth’s surface. It is lower in
mountainous regions and also varies as a result of the Earth’s rotation and
temperature changes in the atmosphere, both of which cause large move-
ments of air. They create high- and low-pressure areas and winds as air
[owvs from high-pressure to low-pressure areas in an attempt to try and
equalise the air pressure. This is an important phenomenon for the world’s
weather but in hydraulics such differences are relatively small and have
little effect on solving problems — except of course if you happen to be
building a pumping station for a community in the Andes or the Alps. So
for all intents and purposes, atmospheric pressure close to sea level can
be assumed constant at 100 kN/m?2 — or 10 m head of water. For example
experiencing atmospheric pressure, see Box 2.6.

BOX 2.6 EXAMPLE: EXPERIENCING
ATMOSPHERIC PRESSURE

One way of experiencing the effect of atmospheric pressure is to place a large
sheet of paper on a table over a thin piece of wood (Figure 2.9). If you hit the
wood sharply it is possible to strike a considerable blow without disturbing
the paper. You may even break the wood. This is because the paper is being
held down by the pressure of the atmosphere.

If the paper is 1.0 m?, the force holding down the paper can be calculated
as follows:

force = pressure X area.

Atmospheric pressure on
paper holds down the
Sharp downward piece of wood
force will break
the wood

Figure 2.9 Experiencing atmospheric pressure.




40 Practical Hydraulics and Water Resources Engineering

In this case

pressure = atmospheric pressure = 100 kN/m?.
And so

force holding the paper down =100 x | = 100 kN.

In terms of apples this is about 100,000 or 10 tons, which is a large force.
It is little wonder that the wood breaks before the paper lifts.

2.8.1 Mercury barometer

An instrument for measuring atmospheric pressure is the mercury
barometer. Evangelista Torricelli, is credited with inventing this device
in 1643 which is still very much in use today. The only modi [cation was
added by Jean Fortin (1750-1831), an instrument maker, who introduced
a vernier measuring scale so that minor changes in atmospheric pres-
sure could be accurately measured. Hence, the common name of Fortin
barometer.

Torricelli’s barometer consists of a vertical glass tube closed at one end,
[1Iéd with mercury and inverted with the open end immersed in a tank of
mercury which creates a vacuum in the top of the tube (Figure 2.10). The
mercury surface in the tank is exposed to atmospheric pressure and this

Vacuum

i “fE

‘ ~+— Mercury

Atmospheric
| pressure

Figure 2.10 Measuring atmospheric pressure using a mercury barometer.
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BOX 2.7 EXAMPLE: MEASURING ATMOSPHERIC
PRESSURE USING A MERCURY BAROMETER

Calculate atmospheric pressure when the reading on a mercury barometer is
760 mm of mercury (Figure 2.10). What would be the height of the column if
the same air pressure was measured using water instead of mercury?

The pressure-head equation links together atmospheric pressure and the
height of the mercury column but remember the fluid is now mercury and
not water

atmospheric pressure = pgh,

where h is 760 mm and p for mercury is 13,600 kg/m? (13.6 times denser than
water).
So,

atmospheric pressure = 13.6 x 9.81 x 0.76
= 101,400 N/m? or 101.4 kN/m?.

Calculate the height of the water column to measure the same atmospheric
pressure using the pressure-head equation again

atmospheric pressure = pgh.

This time the fluid is water and so

101,400 = 1,000 x 9.81 x h
h =10.32m.

This is a very tall water column and there would be practical difficulties if
this was used for routine measurement of atmospheric pressure. Hence, the
reason why a very dense liquid-like mercury is used to make measurement
more manageable.

supports the mercury column, the height of which is a measure of atmo-
spheric pressure. A typical value would be 760 mm when it is measured at
sea level (see example in Box 2.7).

Torricelli used mercury instead of water because it is signi [cantly denser
and makes a more manageable measuring device. If he had used water, he
would have needed a tube over 10 m high to do it — not a very practical
proposition for use in a laboratory or for taking measurements.
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BOX 2.8 EXAMPLE: CALCULATING PRESSURE HEAD

A pipeline is operating at a pressure of 3.5 bar. Calculate the pressure in
metres head of water.

| bar = 100 kN/m2 = 100,000 N/m2.
And so
3.5 bar = 350 kN/m2 = 350,000 N/m2.

Use the pressure-head equation

p = pgh
350,000 = 1,000 x 9.81 x h.

Calculate head h
h=35.67 m.

Round this off: 3.5 bar = 36 m of head water (approximately).

Atmospheric pressure is also used as a unit of measurement for pressure
both for meteorological purposes and in hydraulics. This is known as the
bar (see example in Box 2.8). For convenience, 1 bar pressure is rounded
off to 100 KN/m?2.

A more commonly used term in meteorology is the millibar. So,

1 millibar = 0.1 kN/m2 =100 N/m?2.

To summarise — there are several ways of expressing atmospheric pressure

atmospheric pressure = 1 bar
or =100 kN/m?
or = 10 m head of water
or = 760 mm head of mercury.

2.9 MEASURING PRESSURE

2.9.1 Gauge and absolute pressures

Pressure measuring devices work in the atmosphere with normal atmo-
spheric pressure all around them. Rather than adding atmospheric pressure
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Gauge pressure
measured above

(or below)
atmospheric
pressure Atmospheric pressure
Absolute pressure
10 m head measured above
of water

vacuum pressure

Vacuum

Figure 2.1 Measuring gauge and absolute pressures.

each time a measurement is made, it is a common practice to assume that
the atmospheric pressure is equal to zero and so it becomes the base line
(or zero point) from which all pressure measurements are made. It is rather
like setting sea level as zero from which all ground elevations are measured
(Figure 2.11). Pressures measured in this way are called gauge pressures.
They can be either positive (above atmospheric pressure) or negative (below
atmospheric pressure).

Most pressure measurements in civil engineering are gauge pressures but
some mechanical engineers, working with gas systems occasionally measure
pressure using a vacuum as the datum. In such cases the pressure is referred
to as absolute pressure. The vacuum is now the zero pressure. As it is not pos-
sible to go below vacuum, all absolute pressures have positive values.

To summarise:

Gauge pressures are pressures measured above or below atmospheric
pressure. Absolute pressures are pressures measured above a vacuum.

To change from one to the other

absolute pressure = gauge pressure + atmospheric pressure.

Note, if only the word pressure is used, it is reasonable to assume that
this means gauge pressure.

2.9.2 Bourdon gauges

Pressure can be measured in several ways. The most common instrument is
the Bourdon gauge (Figure 2.12a). This is located at some convenient point
on a pipeline or pump to record pressure, usually in KN/m? or bar pressure.
It is a simple device and works on the same principle as a party toy that
uncoils when you blow into it. Inside a Bourdon gauge, there is a similar
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Figure 2.12 Ways of measuring pressure. (a) Bourdon gauge and piezometer. (b) U-tube
manometer. (c) Venturi flow meter with manometer.

curved tube which tries to straighten out under pressure and causes a
pointer to move through a gearing system across a scale of pressure values.

2.9.3 Piezometers

This is another device for measuring pressure. A vertical tube is connected
to a pipe so that water can rise up the tube because of the pressure in the
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BOX 2.9 EXAMPLE: MEASURING
PRESSURE USING A STANDPIPE

Calculate the height of a standpipe needed to measure a pressure of
200 kN/m? in a water pipe (Figure 2.12a).
Use the pressure-head equation

p = pgh
200,000 = 1,000 x 9.81 x h.

Note in the equation pressure and density are both in N — not kN.
Rearranging this equation to calculate h.

h =204 m.

A very high tube would be needed to measure this pressure and it would
be a rather impracticable measuring device! For this reason high pressures
are normally measured using a Bourdon gauge.

pipe (Figure 2.12a). This is called a piezometer or standpipe. The height of
the water column in the tube is a measure of the pressure in the pipe, that
is, the pressure head. The pressure in kN/m? can be calculated using the
pressure-head equation (see Box 2.9).

2.9.4 Manometers

Vertical standpipes are not very practical for measuring high pressures. An
alternative is to use a U-tube manometer (Figure 2.12b).

The bottom of the U-tube is [Iléd with a different liquid which does not
mix with that in the pipe. When measuring pressures in a water system, oil
or mercury is used. Mercury is very useful because high pressures can be
measured with a relatively small tube (see atmospheric pressure).

To measure pressure, a manometer is connected to a pipeline and mercury
is placed in the bottom of the U bend. The basic assumption is that as the
mercury in the manometer is not moving, the pressures in the two limbs must
be the same. If a horizontal line x—x is drawn through the mercury surface
in the [rsk limb and extended to the second limb then it can be assumed that

pressure at point A = pressure at point B.

This is the fundamental assumption on which all manometer calcula-
tions are based. It is then a matter of adding up all the components which
make up the pressures at A and B to work out a value for the pressure in
the pipe.
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First, calculate the pressure at A

pressure at A = water pressure at centre of pipe (p)
+ pressure due to water column A,
P + Pwaten&h

= p + (1,000 x 9.81 x /)

= p + (9,810 x hy).

Now, calculate the pressure at B

pressure at B = pressure due to mercury column A,
+ atmospheric pressure.

As we are measuring gauge pressure, atmospheric pressure is zero. So,

pressure at B = Pimercuryy €2
= 1,000 x 13.6 x 9.81 x b,
= 133,430h,.

Putting the pressure at A equals to the pressure at B
p + 9,810h, = 133,430h,.

Rearrange this to determine the pressure p in the pipe
p = 133,430h, — 9,810h,.

Note that pressure p is in N/m?.

So, the pressure in this pipeline can be calculated by measuring 4, and b,
and using the above equation (see example in Box 2.10).

Some manometers are used to measure pressure differences rather than
actual values of pressure. One example of this is the measurement of the
pressure difference in a venturi meter used to measure pipe discharge
(Figure 2.12c). There is a drop (difference) in pressure as water [OWs
through the narrow venturi. By connecting one limb of the manometer to
the main pipe and the other limb to the venturi, the difference in pressure
can be measured. Note that the pressure difference is not just the difference
in the mercury readings on the two columns as is often thought. The pres-
sure difference must be calculated using the principle described above for
the simple manometer.

The best way to deal with manometer measurements is to remember
the principle on which all manometer calculations are based and not the
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BOX 2.10 EXAMPLE: MEASURING
PRESSURE USING A MANOMETER

A mercury manometer is used to measure the pressure in a water pipe
(Figure 2.12b). Calculate the pressure in the pipe when h = 1.5m and
h,=0.8 m.

To solve this problem, start with the principle on which all manometers
are based

pressure at A = pressure at B

pressure at A = water pressure in pipe (p)

+ pressure due to water columnh
P+ Prwater) gh

p +1,000 x 9.81 x 1.5

pressure at B = pressure due to mercury columnh,

+ atmospheric pressure (=zero)

= p(mercury) th
= 1,000 x 13.6 x 9.81 x 0.8.

Putting the pressure at A equal to the pressure at B
p+1,000x9.81 x 1.5=1,000x% 13.6 x 9.81 x0.8.

Rearrange this to determine p
p = (1,000 x 13.6 x 9.81 x 0.8) — (,000 x 9.81 x 1.5)
= 106,732 - 14,715
= 92,017 N/m* = 92 kN/m?.

formula for pressure. There are many different ways of arranging manom-
eters with different [uids in them and so there will be too many formulae
to remember. So, just remember and apply the principle — pressure on each
side of the manometer is the same across a horizontal line A-B.

2.10 DESIGNING DAMS

Engineers are always interested in the ways in which things fall down or
collapse so they can devise design and construction procedures that produce
safe reliable structures. Dams in particular are critical structures because
failure can cause a great deal of damage and loss of life. Hydraulically, a
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By overturning

By sliding

Figure 2.13 Dams can fail by sliding and overturning.

dam structure can fail in two ways — the pressure of water can cause the
dam to slide forward and it can also cause it to overturn (Figure 2.13). The
engineer must design a structure that is strong enough to resist both these
possible modes of failure. This is where the principles of hydrostatics play
a key role — the same principles apply to small dams only a few metres high
and to major dams 40 m or more in height.

The pressure of water stored behind a dam produces a horizontal force
which could cause it to slide forward if the dam was not strong enough to
resist. So, the total force resulting from the water pressure must [rsit be
calculated. The location of this force is also important. If it is near the top
of the dam, it may cause the dam to overturn. If it is near the base, then it
may fail by sliding.

The force on a dam is calculated from the water pressure (Figure 2.14a).
Remember that pressure pushes in all directions and in this case it is the
horizontal push on the dam which is important. At the water surface the
pressure is zero, but 1.0 m below the surface the pressure rises to 10 kN/m?
(approximately), at 2.0 m it reaches 20 kN/m, and so on (remember the
pressure-head equation p = pgh). A graph of the changes in pressure with
depth helps to visualise what is happening. It is triangular in shape and is
called the pressure diagram. 1t not only shows how pressure varies with
depth on the upstream face of a dam but is also very useful for calculating
the force on the dam and its location.

The force on the dam can be calculated from the pressure and the area of
the dam face using the equation F = pa. But the pressure is not constant —
it varies down the face of the dam and so the question is — which value of
pressure to use? One approach is to divide the dam face into lots of small
areas and use the average pressure for each small area to calculate the force
at that point. All the forces are then added together to [ndl the total force
on the dam. But this is a rather tedious approach. A much simpler method
is to use a formula derived from combining all the small forces mathemati-
cally into a single large force known as the resultant force F (Figure 2.14a).
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Figure 2.14 Designing a dam. (a) Pressure diagram. (b) Location of force. () Dam
paradox. (d) Assume dam is 1.0 m long. (e) Typical concrete dam.
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This single force has the same effect as the sum of all the smaller forces and
is much easier to deal with. The formula for F is

force (F) = pgay,

where p is the density of water (kg/m?), g the gravity constant (9.81 m/s?), a
the area of the wetted face of the dam (m?) and y the depth from the water
surface to centre of the wetted area (m).

For the mathematically minded a derivation of this formula can be found
in most engineering hydraulics textbooks.

We can also work out the force from the pressure diagram. It is in fact,
equal to the area of the diagram, that is, the area of the triangle. To see
how this, and the formula for force, works look at the example of how to
calculate the force on a dam in Box 2.11.

The position of this force is also important. To determine the depth D
from the water surface to the resultant force F (Figure 2.14b) on the dam,
the following formula can be used:

2
p="_+3,
12y

where /4 is the height of the wetted face of the dam (m) and y the depth
from water surface to the centre of the wetted area of the dam (m).

Like the force formula, this one can also be derived from the prin-
ciples of hydrostatics. But an easier way is to use the pressure diagram
to determine D. The force is in fact, located at the centre of the diagram
which, for a triangle, is two thirds down from the apex (i.e. from the
water surface).

Note that these formulae only work for simple vertical dams. When more
complex shapes are involved, such as earth dams with sloping sides, then
the formulae do not work. But solving the problem is not so dif [cdlt — it
relies on applying the same hydrostatic principles. Most standard civil engi-
neering texts will show you how.

2.10.1 Dam paradox

Dams raise an interesting paradox. If two dams are built and are the same
height but hold back very different amounts of water how will they dif-
fer in their hydraulic design (Figure 2.14c)? Many would say that dam 2
would need to be much stronger than dam 1 because it is holding back
more water. But this is not so. Hydraulically, the design of the two dams
will be the same. The force on dam 1 is the same as on dam 2 because
the force depends only on the depth of water and not the amount stored.
The effects of failure would obviously be more serious with dam 2 as the
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BOX 2.1 EXAMPLE: CALCULATING
THE FORCE ON A DAM

A farm dam is to be constructed to contain water up to 5 m deep. Calculate
the force on the dam and the position of the force in relation to the water
surface (Figure 2.14b).

Calculate the force F

F = pgay,

where p = 1,000 kg/m3, g=9.81 m/s?anda=bxh=1x5=5m.

Note: When the length of the dam is not given assume thatb = | m. The force
is then the force per metre length of the dam (Figure 2.14d).

. h
=—=25m.
Y73

Put all these values into the formula for F

F =1,000 x 9.81 x5 x 25
=122,625N
F =122.6 kN per m length of the dam.

Using the alternative method of calculating the area of the pressure diagram

area of pressure diagram (triangle) =

X base x height

X pgh x h

N[— N[— N|—

x 1,000 x 981 x 5 x5

-
1

N

2.6 kN per m length of the dam.

This produces the same answer as the formula.
To locate the force use the formula
2
p="h 4 y
12y
2
= 2 425
12 x 2.5
3.33 m below the water surface.

o
1




52 Practical Hydraulics and Water Resources Engineering

Using the pressure diagram method, the force is located at the centre of
the triangle, which is two-thirds down from the water surface

D = z X h = Z x5
3 3
D = 3.33 m below the water surface.

This produces the same answer as the formula.

potential for damage and loss of life from all that extra water could be
immense. So, the designer may introduce extra factors of safety against
failure. So if you thought the forces would be different, place your trust in
the well-established principles of hydrostatics and not your intuition.

2.11 FORCES ON SLUICE GATES

Sluice gates are used to control the [ow of water from dams into pipes and
channels. They may be circular or rectangular in shape and are raised and
lowered by turning a wheel on a threaded shaft (Figure 2.15a).

Gates must be made strong enough to withstand the forces created by
hydrostatic pressure. The pressure also forces the gate against the face of
the dam which can make it dif [cilt to lift easily because of the friction it
creates. So, the greater the pressure the greater will be the force required to
lift the gate. This is the reason why some gates have gears and hand wheels
[ited to make lifting easier.

The force on a gate and its location can be calculated in the same way as
for a dam. The force on any gate can be calculated using the same formula
as was used for the dam

F = pgay.

In this case, a is the area of the gate and y the depth from the water sur-
face to the centre of the gate. The formula for calculating D, the depth to
the force, depends on the shape of the gate.

For rectangular gates

2
D=9 4y
12y

where d is the depth of the gate (m) and y the depth from the water surface
to the centre of the gate (m). Note: in this case d is the depth of the gate (m)
and not the depth of water behind the dam.
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Figure 2.15 Forces on sluice gates. (a) Force on rectangular sluice gate. (b) Pressure
diagram. (c) Typical circular sluice gate.
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For circular gates

2
D:L{-i’
ay 7

where 7 is the radius of the gate (m).

The depth D from the water surface to the force F must not be confused
with y. D is the depth to the point where the force acts on the gate. It is
always greater than y .

The force and its location on a gate can also be determined using the pres-
sure diagram, but only that part of the diagram in line with the gate is of
interest (Figure 2.15b). The force on the gate is calculated from the area of
the trapezium and its location is at the centre of the trapezium. This can be

BOX 2.12 EXAMPLE: CALCULATING
THE FORCE ON A SLUICE GATE

A rectangular sluice gate controls the release of water from a reservoir. If the
gate is 0.5 m X 0.5 m and the top of the gate is located 3.5 m below the water
surface, calculate the force on the gate and its location below the water sur-
face (Figure 2.15b).

First calculate the force F on the gate

F = pgay,
where
a = area of the gate = 0.5 x 0.5 = 0.25 m’
y = depth from water surface to the centre of the gate
=35+025=375m.
And so

F =1,000 x 9.81 x 0.25 x 3.75
F =9,120Nor 9.12 kN.

Next, calculate the depth from water surface to where force F is acting

Ea
12y
025

T 12x3.75
D =3.76m.

D

+3.75
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found by using the principle of moments. But if you are not so familiar with
moments, the centre can be found by cutting out a paper shape of the trape-
zium and freely suspending it from each corner in turn and drawing a verti-
cal line across the shape. The point where all the lines cross is the centre. A
common mistake is to assume the depth D is two thirds of the depth from
the water surface. It is true for a simple dam but not for a sluice gate.

The above equations cover most hydraulic sluice gate problems but occa-
sionally gates come in different shapes and are sometimes at an angle rather
than vertical. It is still possible to work out the forces on such gates but it is
a bit more involved. Other hydraulic textbooks will show you how, if you
are curious enough. An example of calculating the force and its location on
a hydraulic gate is shown in Box 2.12.

2.12 ARCHIMEDES PRINCIPLE

Returning now to Archimedes who [rst set down the basic rules of hydro-
statics. His most famous venture seems to have been in the public baths
in Greece around the year 250 bc. He allegedly ran naked into the street
shouting eureka — he had discovered an experimental method of detecting
the gold content of the crown of the King of Syracuse. He realised that
when he got into his bath, the water level rose around him because his body
was displacing the water and that this was linked to the feeling of weight
loss; that uplifting feeling that everyone experiences in the bath. As the
baths were usually public places, he probably noticed as well that smaller
people displaced less water. It is at this point that many people draw the
wrong conclusion. They assume that this has something to do with a per-
son’s weight. This is quite wrong — it is all about their volume. To explain
this, let us return to the king’s crown.

Perhaps the king had two crowns that looked the same in every way, but
one was made of gold and he suspected that someone had short-changed
him by making the other of a mixture of gold and some cheaper metal.
The problem that he set to Archimedes was to tell him which was the gold
one. Weighing them on a normal balance in air would not have provided
the answer because a clever forger would make sure that both crowns were
the same weight. If however, he could measure their densities he would
then know which was gold because the density of gold has a [x&d value
(19,300 kg/m3) and this would be different to the crown of mixed metals.
But to determine their densities you need to be able to measure the crown
volumes. If the crowns were simple shapes, such as cubes, then it would
be easy to calculate their volume. But crowns are not simple shapes and it
would have been almost impossible to measure them accurately enough for
calculation purposes. This is where immersing them in water helps.

The crowns may have weighed the same in air but when Archimedes
weighed the crowns immersed in water he observed that they had
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different weights. Putting this another way, each crown experienced a
different loss in weight due to the buoyancy effect of the water. It is this
loss in weight that was the key to solving the mystery. By measuring the
loss in weight of the crowns, Archimedes was indirectly measuring their
volumes.

To understand this, imagine a crown is immersed in a container full
of water up to the over-[aWwv pipe (Figure 2.16a). The crown displaces the
water, spilling it down the over-[oWw where it is caught in another con-
tainer. The volume of the spillage water can easily be measured and it has
exactly the same volume as the crown. But the most interesting point is
that the weight of the spillage water (water displaced) is equal to the loss in
the weight of the crown. So, by measuring the loss in weight, Archimedes
was in fact measuring the weight of displaced water, that is, the weight of
an equal volume of water. As the weight density of water is a [x&d value
(9,810 N/m3), it is a simple matter to convert this weight of water into a
volume and so determine the density of the crown.

This is the principle that Archimedes discovered: When an object is
immersed in water it experiences a loss in weight and this is equal to the
weight of water it displaces.

What Archimedes measured was not actually the density of gold but its
relative density or speci [Chravity as it is more commonly known. This is
the density of gold relative to that of water and he calculated this using the
formula

weight of crown
weight loss when immersed in water -

specific gravity =
This may not look like the formula for speci [chravity in Section 1.11.2
but it is the same. From Section 1.11.2

weight of an object
weight of an equal volume of water

specific gravity =

But Archimedes principle states that
weight loss when immersed in water = weight of an equal volume of water.

So, the two formulae are in fact identical and Archimedes was able to
tell whether the crown was made of gold or not by some ingenious think-
ing and some simple calculations. The method works for all materials
and not just gold and also for all [uids and not just water. Indeed, this
immersion technique is now a standard laboratory method for measuring
the volume of irregular shaped objects and for determining their speci [c]
gravity.
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Figure 2.16 Archimedes principle. (a) Measuring the volume of an irregular object.
(b) Demonstrating apparent loss in weight. (c) The ‘Cartesian Diver’.
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Still not convinced? Try this example with numbers. A block of material
has a volume of 0.2 m3 and is suspended on a spring balance (Figure 2.16b)
and weighs 3,000 N. When the block is lowered into the water it displaces
0.2 m? of water. As the water weighs 10,000 N/m3 (approximately), the dis-
placed water weighs 2,000 N (i.e. 0.2 m? x 10,000 N/m?). Now, according
to Archimedes, the weight of this water should be equal to the weight loss
by the block and so the spring balance should now be reading only 1,000 N
(i.e. 3,000-2,000 N).

To explain this, think about the space that the block (0.2 m3) will occupy
when it is lowered into the water (Figure 2.16b). Before the block is lowered
into the water, the ‘space’ it would take up is currently occupied by 0.2 m3
of water weighing 2,000 N. Suppose that the water directly above the block
weighs 1,500 N (note that any number will do for this argument). Adding
the two weights together is 3,500 N and this is supported by the underly-
ing water and so there is an equal and upward balancing force of 3,500 N.
The block is now lowered into the water and it displaces 0.2 m? of water.
The water under the block takes no account of this change and continues
to push upwards with a force of 3,500 N and the downward force of the
water above it continues to exert a downward force of 1,500 N. The block
thus experiences a net upward force or a loss in weight of 2,000 N (i.e.
3,500-1,500 N). This is exactly the same value as the weight of water that
was displaced by the block. The reading on the spring balance is reduced by
this amount from 3,000 to 1,000 N.

A simple but striking example of this apparent weight loss is to tie a
length of cotton thread around a house brick and [rst try to suspend it in
the air and then in water. If you try to lift the brick in the air, the thread
will very likely break. But the uplift force when the brick is in water means
that the brick can now be lifted easily by the thread. It is this same weight
‘loss’ that enables rivers to move great boulders during [abds and the sea
to move shingle along the beach.

2.12.1 Floating objects

When an object such as a cork [0ats on water it is supported by the uplift
force or buoyancy. It appears that the object has lost all of its weight. If the
cork was held below the water surface and then released, it rises to the sur-
face. This is because the weight of the water displaced by the cork is greater
than the weight of the cork itself and so the cork rises under the unbalanced
force. Once at the surface, the weight of the cork is balanced by the lifting
effect of the water. In this case, the water displaced by the cork is not a
measure of its volume but a measure of its weight.

Another way of determining if an object will [0at is to measure its den-
sity. When the density is less than that of water it will [0at. When it is
greater it will sink. A block of wood, for example, is half the density of
water and so it [oats half submerged. Icebergs, which have a density close
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to that of water, [0at with only one tenth of their mass above the surface.
The same principle also applies to other [uids. Hydrogen balloons, for
example, rise in air because hydrogen is 14 times less dense than air.

Steel is six times denser than water and so it will sink. People laughed
when it was [rst proposed that ships could be made of steel and would
[oat. But today we just take such things for granted. Ships [aat even when
loaded because much of their volume is [l&d with relatively light cargo and
a lot of air space and so their average density is less than that of sea water.

Buoyancy is also affected by the density of seawater, which varies con-
siderably around the world and affects the load that ships can safely carry.
In Bombay, the sea is more salty than it is near the United Kingdom and so
ships ride higher in the water. If a ship is loaded with cargo in Bombay and
is bound for London, as it nears the United Kingdom it will lie much lower
in the water and this could be dangerous if it is overloaded.

The *Cartesian diver’ is an interesting example of an object, which can
either sink or [0at by slightly varying its density a little above or below that
of water (Figure 2.16c). The ‘diver’ is really a small length of glass tubing,
sealed and blown into a bubble at one end and open at the other. You can
easily make one in a laboratory using a bunsen burner and a short length
of glass tube. Next, [ndl a bottle with a screw top, [t with water and put
the diver into the water. The diver will [oat because the air bubble ensures
that the average density is less than that of water. Now, screw down the top
and the diver will sink. This is because this action increases the water pres-
sure, which compresses the air in the diver and increases its average density
above that of water. Releasing the screw top allows the diver to rise to the
surface again. This same principle is used to control submarines. When a
submarine dives, its tanks are allowed to [lwith water so that its average
density is greater than that of water. The depth of submergence is deter-
mined by the extent to which its tanks are [added. To make the submarine
rise, water is blown out of its tanks using compressed air.

To summarise:

An object [0ats when it is less dense than water but sinks when it is
denser than water. When an object [0ats it displaces water equal to its
weight.

2.12.2 Submarine problem

Here is a problem to test your understanding of Archimedes principle.

A submarine is [0ating in a lock (Figure 2.17). It then submerges and
sinks to the bottom. What happens to the water level in the lock? Does it
rise or fall?

Archimedes principle says that when an object [aats it displaces its own
weight of water and when it sinks it displaces its own volume.

Applying this to the submarine — when it is [aating on the water
surface, the submarine displaces its own weight of water which will
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Water level rises as Water level drops as
submarine displaces its submarine displaces only
own weight of water its own volume
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Figure 2.17 Applying Archimedes principle to submarines.

be substantial because submarines are heavy. But when the submarine
sinks to the bottom it only displaces water equivalent to its volume. So,
the amount of water displaced by the [Qating submarine will be much
greater than the volume of water displaced when it is submerged. This
means, that when the submarine dives, the water level in the lock will
drop (very slightly!).

2.12.3 Ice problem

Another interesting problem occurs when ice is added to water. When ice
is added, the water level rises. But when the ice melts what happens to the
water level? Does it rise, fall or stay the same?

Ice is a solid object that [aats and so it should behave in the same way as
any other solid object. When it melts, however, it becomes part of the water
and, in effect, it ‘sinks’.

To see what happens, take 1.0 L of water, which has a mass of 1 kg and
weight 10 N, and freeze it. Water expands as it freezes and so as it turns
into ice its volume will increase by approximately 8%; to 1.08 L of ice. But
remember it is still only 1.0 L of water and so its weight has not changed —
just its volume. If the block of ice is now put into the tank it will [aat on the
water, like an iceberg, because the density of the ice is slightly less than the
water. The water level in the tank will also rise as a result of the displace-
ment by the ice — like any solid object that [aats, the ice displaces its own
weight of water, which is still 20 N. Now, 10 N of water has a volume of
1.0 L and so 1.0 L of water will be displaced. It has nothing to do with the
volume of the ice — only its weight. However, when the ice melts it ‘sinks’
into the tank, and like any other object that sinks, it now displaces its own
volume of water. But the volume of the melted ice (now water again) is
1.0 L. So, the displacement in each case is the same — 1.0 L — which means
the water level in the tank remains unchanged when the ice melts. Try this
for yourself with a jug of water and some ice cubes (Figure 2.18).
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Figure 2.18 Ice problem.

It is the volume of the ice that can mislead your thinking because it
changes signi [cdntly when the water freezes. Do not be misled by this, just
follow the principle of Archimedes and everything will work out right.

This principle can be applied to the concerns over melting ice caps and
sea level rises as we begin to experience changes in our climate. If the North
Polar ice melts, the sea level would not be affected because the ice is already
in the sea and is [oating — just like the above example. But if the South
Polar ice melts, this would cause the sea level to rise because the ice is on
land and would add to the volume of water in the oceans.

2.12.4 Drowning in quicksand — myth or reality?

A common scene in many adventure [mhs is of someone stumbling into a
patch of quicksand and getting sucked under (Figure 2.19). Great drama
but is this what really happens? Recent research at the Ecole Normal
Supérieure in Paris, based partly on Archimedes principle, suggests other-
wise. Apparently, the work was inspired by a holiday trip to the legendary
quicksand at Daryacheh-ye Namak salt lake near Qom in Iran where local
shepherds speak of camels disappearing without trace.

Quicksand is a mixture of [nd sand, clay and salt water, in which the
grains are delicately balanced and very unstable. This makes the mixture
appear solid but once it is disturbed it starts to behave like a liquid and so if
you stand on it you will start to sink into it. But just like any liquid, there is a
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Figure 2.19 Quicksand problem.

buoyancy effect (Archimedes principle) and so how far you will sink depends
on your density. So, if you [0at in water you will also [@at in quicksand.

But the problem is not just a hydraulic one. The research showed that
when the mixture lique [eg, the sand and clay fall to the bottom and create
thick sediment that also helps to prevent you sinking further. So, the good
news is that the two combined mean that you are unlikely to sink much
beyond your waist — though not such good news if you fell in head [rst.
Struggling and kicking will not make you sink further — it just makes the
mixture more unstable and so you will sink faster. The bad news comes
when you try to get out because the mixture will hold you fast. It can take
as much force to pull you out of quicksand as it does to lift a typical family
car. So, you are more likely to have your limbs pulled off than get out of
the mess! So, how do you get out? One suggestion by the researchers is to
gently wriggle your feet to liquefy the mixture and then slowly pull yourself
up a few millimetres at a time.

The myth surrounding quicksand probably originates from people fall-
ing in head [rst and in such circumstances you are most likely to drown.
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Science also spoils a good story — it means that all those dramas about
quicksand such as The Hound of the Baskervilles are pure fantasy!

2.13 SOME EXAMPLES TO TEST
YOUR UNDERSTANDING

1. Determine the pressure in kN/m? for a head of (a) 14 m of water and
(b) 1.7 m of oil. Assume the mass density of water is 1,000 kg/m? and
oil is 785 kg/m? (137.34 kN/m?, 13.09 kN/m?).

2. A storage tank, 2.3 m long by 1.2 m wide and 0.8 m deep is full of
water. Calculate (a) the mass of water in the tank, (b) the pressure on
the bottom of the tank, (c) the force on the end of the tank and (d) the
position of this force below the water surface (2,210 kg, 7,848 N/m?2,
3,767 N, 0.53 m below the water surface).

3. Calculate atmospheric pressure in KN/m2? when the barometer read-
ing is 750 mm of mercury. Calculate the height of a water barometer
needed to measure atmospheric pressure (100.06 kN/m?2, 10.2 m).

4. Calculate the pressure in kN/m2and in m head of water in a pipe-
line carrying water using a mercury manometer when 4, =0.5 m and
h,=1.2 m. Assume the speci [cyravity of mercury is 13.6 (155 kN/m?,
15.82 m).

5. A vertical rectangular sluice gate 1.0 m high by 0.5 m wide is used to
control the discharge from a storage reservoir. Calculate the horizon-
tal force on the gate and its location in relation to the water surface
when the top of the gate is located 2.3 m below the water surface
(13.73 kN, 2.83 m).

6. Calculate the force and its location below the water surface on a
0.75 m diameter circular sluice gate located when the top of the gate
is located 2.3 m below the water surface (11.57 kN, 2.69 m).



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com



Chapter 3

When water starts to flow
Hydrodynamics

3.1 INTRODUCTION

Hydrodynamics is the study of water [aw. It helps us to understand how
water behaves when it [aWvs in pipes and channels and to answer such ques-
tions as — What diameter of pipe is needed to supply a village or a town
with water? How wide and deep must a channel be to carry water from a
dam to an irrigation scheme? What kind of pumps might be required and
how big they must be? These are the practical problems of hydrodynamics.

Hydrodynamics is more complex than hydrostatics because it must take
account of more factors, particularly the direction and velocity in which
the water is [aWwing and the in [ugnce of viscosity. In early times hydrody-
namics, like many other developments, moved forward on a trial-and-error
basis. If the [oWv was not enough, then a larger diameter pipe was used; if
a pipe bursts under the water pressure, then a stronger one was put in its
place. But during the past 300 years or so, scientists have found new ways
of answering the questions about size, shape and strength. They experi-
mented in laboratories and came up with mathematical theories that have
now replaced trial-and-error methods for solving the most common hydro-
dynamic problems.

3.2 EXPERIMENTATION AND THEORY

Experimentation was a logical next step from trial and error. Scientists
built physical models of hydraulic systems in the laboratory and tested
them before building the real thing. Much of our current knowledge of
water [0W in pipes and open channels has come from experimentation and
devising empirical formulae which link water [0Ww with the size of pipes
and channels. Today, we use formulae for most design problems, but there
are still some problems which are not easily solved in this way. Practical
laboratory experiments are still used to [ndl solutions for the design of
complex works such as harbours, tidal power stations, river [add con-
trol schemes and dam spillways. Small-scale models are built to test new

65
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designs; though mathematical modelling is beginning to take over as a
cheaper option (Figure 3.1).

Some formulae have also been developed analytically from our under-
standing of the basic principles of physics, which include the properties of
water and Newton’s laws of motion. The design rules for hydrostatics were
developed analytically and have proved to work very well. But when water
starts to move, it is dif [cillt to take account of all the new factors involved,
in particular viscosity. The engineering approach, rather than the scienti [c]
one, is to try and simplify a problem by ignoring those forces which do
not seriously impact the outcome. Viscosity is usually ignored because its
effects are small. This greatly simpli[ed problems and solutions. Ignoring
the forces of viscosity makes pipeline design much simpler. It has no effects
on the [nal choice of pipe size. Other more important factors dominate the
design process such as velocity, pressure and the forces of friction. These do
have signi [cdnt in [u@nce on the choice of pipe size and so it is important to
focus attention on them. This is why engineering is often regarded as much
an art as a science. The science is about knowing what physical factors
must be taken into account but the art of engineering is knowing which of
the factors can be safely ignored in order to simplify a problem without it
seriously affecting the accuracy of the outcome.

Remember, engineers are not always looking for high levels of accuracy.
There are inherent errors in all the data and so there is little point in calcu-
lating the diameter of a pipe to several decimal places when the data being

Figure 3. Laboratory model of a dam spillway.
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used have not been recorded with the same precision. Electronic calcula-
tors and computers have created much of this problem and many students
still continue to quote answers to many decimal places simply because the
computer says so. The answer is only as good as the data going into the
calculation and so another engineering skill is to know how accurate an
answer needs to be. Unfortunately, many of the arts of engineering can only
be learned through practice and experience. This is the reason why a vital
part of training young engineers always involves working with older, more
experienced engineers to acquire the skills. Just knowing the right formula
is not enough.

The practical issues of cost and availability also impose limitations on
hydraulic designs. For example, commercially available pipes come in a
limited range of sizes, for example, 50, 75, 100 mm diameter. If an engineer
calculates that a 78 mm diameter pipe is needed, he is likely to choose the
next size of pipe to make sure it will do the job properly, that is, 100 mm.
So, there is nothing to be gained in spending a lot of time re [ning the
design process in such circumstances.

Simplifying problems so that they can be solved more easily, without
loss of accuracy, is at the heart of hydrodynamics — the study of water
movement.

3.3 HYDRAULIC TOOLBOX

The development of hydraulic theory has produced three important basic
tools (equations) which are fundamental to solving most hydrodynamic
problems:

< Discharge and continuity
e Energy
= Momentum

They are not dif [cdlt to master and you will need to understand them
well.

3.4 DISCHARGE AND CONTINUITY

Discharge refers to the volume of water [owving along a pipe or channel
each second. Volume is measured in cubic metres (m?®) and discharge is
measured in cubic metres per second (m3/s). Alternative units are litres per
second (L/s) and cubic metres per hour (m3/h).

There are two ways of determining discharge. The [rst involves measur-
ing the volume of water [Qwing in a system over a given time period. For
example, water [awing from a pipe can be caught in a bucket of known
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volume (Figure 3.2a). If the time to [Ilthe bucket is recorded, the discharge
from the pipe can be determined using the following formula

3
discharge (m3/s) = \m

Discharge can also be determined by multiplying the velocity of the water
by the area of the [aW. To understand this, imagine water [QWwing along

(@)
3
Discharge (m%/s) = vo_lume of bucket (m?)
time to fill bucket(s)
(b) %
( |——
Inflow —_—— Outflow
i |— —
—_
—
A Volume of water passing X—X
in one second
© ——=Outflow
L% Qy=ayV,
Inflow =
Q=2
@ .
| i 2z
Inﬂo_yv Outflow
s a,=0.25m?
-
a,=05m2 V;=10 m/s

Figure 3.2 Discharge and continuity. (a) Measuring discharge using volume and time

(b) Measuring velocity and area of flow. (c) Continuity inflow equals outflow.
(d) Example in Box 3.1.
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a pipeline (Figure 3.2b). In 1 s, the volume of water [QWwing past x—x will
be the shaded volume. This volume can be calculated by multiplying the
area of the pipe by the length of the shaded portion. But the shaded length
is numerically equal to the velocity v and so the volume [awing each sec-
ond (i.e. the discharge) is equal to the pipe area multiplied by the velocity.
Writing this as an equation

discharge (Q) = velocity (v) x area (a)
O = va.

The continuity equation builds on the discharge equation and simply
means that the amount of water [0Wing into a system must be equal to the
amount of water [owing out of it (Figure 3.2c¢).

in oW = out [aWv.
And so

0:=0,.

But from the discharge equation
O=wa

Substituting in the continuity equation for Q
vy a4y =V, dy.

So the continuity equation not only links discharges but also links areas
and velocities as well. This is a very simple but powerful equation and is
fundamental to solving many hydraulic problems. An example in Box 3.1
shows how this works in practice for a pipeline with a changing diameter.

The simple equation of in[oWw equals out[aWw is only true when the
[aw is steady. This means the [QWw remains the same over time. But there
are situations when the in [alv does not equal the out [aWwv. An example of
this occurs in our homes (Figure 3.3). The tank in the attic stores water
so that the in[aWv into our homes does not limit our water demand at
peak times. On a much larger scale, reservoirs on rivers perform a simi-
lar function for water supply schemes — balancing supply and demand at
peak times (see Section 8.3.1). In these circumstances, a storage term is
added to the continuity equation

in [oW = out [aWw + rate of increase (or decrease) in storage.
Note that this equation is about discharges and so storage is shown as

the rate at which it is increasing or decreasing. Hydrologists use a similar
equation when calculating rainfall and run-off in the water basins. This is
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BOX 3. EXAMPLE: CALCULATING VELOCITY
USING THE CONTINUITY EQUATION

A pipeline changes area from 0.5 to 0.25 m? (Figure 3.2d). If the velocity in the
larger pipe is 1.0 m/s, calculate the velocity in the smaller pipe.
Use the continuity equation

inflow = outflow.

And so

viar = v,ay
Ix0.5=v, x025
vy, = 2mls.

Note how water moves much faster in the smaller pipe.

Inflow —=

Storage
9 Outflow
—

inflow = outflow + rate of increase (or decrease) in storage

Figure 3.3 Continuity when there is water storage.

the water balance equation. Water volumes are used rather than discharges
(see Section 9.2.1).

3.5 ENERGY

The second basic tool is the energy equation. This links pressure and veloc-
ity. Energy is the capacity to do useful work (see Section 1.9). Water can
have three kinds of energy:

e Pressure energy
e Kinetic energy
< Potential energy
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Energy for solid objects has the dimensions of Nm. For [uids, the units
are little different. It is common practice to measure energy in terms of
energy per unit weight and so the unit of water energy is Nm/N. The Newton
terms cancel each other out and we are left with metres (m). This makes
energy look similar to pressure head; both are measured in metres. Indeed,
we shall see that the terms energy and pressure head are in fact interchange-
able. So, let’s explore these three types of water energy.

3.5.1 Pressure energy

When the water is under pressure, it can do useful work for us. Water
released from a tank can drive a small turbine which in turn drives a gen-
erator to produce electrical energy (Figure 3.4a). So, the pressure available
in the tank is a measure of the energy available to do work. It is calculated
as follows

pressure energy = b

P8

where p is pressure (kN/m?2), p is mass density (kg/m?) and g is the gravity
constant (9.81 m/s?).

Notice that the equation for pressure energy is actually the same as the
familiar pressure — head equation (remember p = pgh). It is just presented in
a different way. So pressure energy is in fact the same as the pressure head
and is measured in metres (m).

@ ] ©
Pressure energy
.+ plpgcando |
useful work |
Potential energy

R F ; z can do useful
[ — Q& ) zl. work

() . 3 e R
( Velocity v ——-
W
2 )
kinetic energy = Y- can do useful work - Fixed datum

29

Figure 3.4 Measuring energy. (a) Pressure energy. (b) Kinetic energy. (c) Potential energy.
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3.5.2 Kinetic energy

When the water [QWvs, it possesses energy because of this movement and this
is known as kinetic energy — sometimes called velocity energy. The faster
the water [aWvs the greater is its Kinetic energy (Figure 3.4b). It is calculated
as follows

Z/2
kinetic energy = —
28

where v is velocity (m/s) and g is gravity constant (9.81 m/s?).

Kinetic energy is also measured in metres (m) and for this reason it is usu-
ally called the velocity head. An example of how to calculate kinetic energy
is shown in Box 3.2.

3.5.3 Potential energy

Water also has energy as a result of its location. Water stored in the moun-
tains can do useful work by generating hydropower, whereas water stored on
a [aod plain has little or no potential for work (Figure 3.4c). The higher the
water source the more energy water has. This is called potential energy. It is
determined by the height of the water in metres above some [xéd datum point

potential energy = z,

BOX 3.2 EXAMPLE: CALCULATING KINETIC ENERGY

Calculate the kinetic energy in a pipeline when the flow velocity is 3.7 m/s.

kinetic energy = %
g
2
=3 . 0.7m
2 x 9.81

Think of this as a velocity head so calculate the equivalent pressure in kN/
m? that would produce this kinetic energy.
To calculate velocity head as a pressure in kN/m? use

p = pgh
= 1,000 x 9.81 x 0.7
= 6,867 N/m? = 6.87 kN/m?.
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where z is the height of the water in metres (m) above a [xéd datum.
Measuring potential energy must be relative to some [x&d point to have
meaning. It is similar to using sea level as the [xéd datum for measuring
changes in land elevation.

3.5.4 Total energy

The really interesting point of all this is that not only are all the different
forms of energy interchangeable (pressure energy can be changed to veloc-
ity energy as so on) but they can also be added together to help us solve a
whole range of hydrodynamic problems. The Swiss mathematician Daniel
Bernoulli (1700-1782) made this most important discovery. Indeed, it was
Bernoulli who is said to have put forward the name of hydrodynamics to
describe water [ow. This led to one of the best known equations in hydrau-
lics — total energy equation. It is often called the Bernoulli equation in
recognition of his contribution to the study of [uid behaviour.
The total energy in a system is the sum of all the different energies
total P, v
otal energy = = + — +
& py 28

On its own, simply knowing the total energy in a system is of limited
value. But realising that the total energy will be the same throughout a
system, even though the various components of energy may be different,
makes it much more useful. Take, for example, water [Qwing in a pipe from
point 1 to point 2 (Figure 3.5). The total energy at point 1 will be the same
as the total energy at point 2. So, we can rewrite the total energy equation
in a different and more useful way

total energy at point 1 = total energy at point 2.

S - B - - - - B - V22
v} 29
2g P2
%)
Total Py ‘
energy p_g
Flow
Q Z
2 ®
! Datum

Figure 3.5 Total energy is the same throughout the system.
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Writing the equation in mathematical terms

2
&+U71+z1 p2+7+z2
pg 28 pg 28

The velocity, pressure and height at 1 are all different from those at point
2 but when they are added together at each point the total is the same. This
means that if we know some of the values at point 1, we can now predict
values at point 2. There are examples of this in the next section.

Note that the energy equation only works for the [ows where there is
little or no energy loss between the points being considered. However, it is
a reasonable assumption to make in many situations, though not so reason-
able for long pipelines where energy losses can be signi [cdnt and so cannot
be ignored. But for now, assume that water is an ideal [uid and that no
energy is lost. Later, in Chapters 4 and 5, we will see how energy losses can
be incorporated into the equation.

3.6 SOME USEFUL APPLICATIONS OF
THE ENERGY EQUATION

The usefulness of the energy equation is well demonstrated in the following
examples.

3.6.1 Pressure and elevation changes

The total energy equation tells us that pressures in pipelines change with
elevation. Pipelines tend to follow the natural ground contours up and
down the hills. As a result, pressure changes simply as a result of differ-
ences in ground levels. So, a pipeline designer must be fully aware of the
terrain over which the pipeline runs in order to deliver the right pressure.
For example, a pipeline running uphill will experience a drop in pressure of
10 m head for every 10 m rise in ground level. Similarly, the pressure in a
pipe running downhill will increase by 10 m for every 10 m fall in ground
level. The energy equation explains why this is so.

A pipeline runs from a reservoir over undulating land. Consider total
energy at two points 1 and 2 along the pipeline some distance apart and at
different elevations (Figure 3.6).

Assuming no energy losses between these two points, the total energy in
the pipeline at point 1 is equal to the total energy at point 2.

total energy at 1 = total energy at 2

2
&+U71+z1: p2+7+z2
pPg 28 g 28

2, and z, are measured from some chosen horizontal datum.
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Total
energy
(TE)

Datum

TE, = TE,

Figure 3.6 Pressure changes with elevation.

Normally, pipelines would have the same diameter and so the velocity at
point 1 is the same as the velocity at point 2. This means that the Kkinetic
energy at points 1 and 2 are also the same. The above equation then simpli-
[edto

21 _ P

—tun ="+
pPg Pg

Rearranging this to bring the pressure terms and the potential terms
together

&_&:zz_zl
pPg pPg

Putting this into words
changes in pressure (m) = changes in ground level (m).
Here, p, and p, represent a pressure change between points 1 and 2 (mea-
sured in metres) which is a direct result of the change in ground level from

2, 10 z,. Note that this has nothing to do with the pressure loss due to fric-
tion as if often thought — it is just ground elevation changes. An example



76 Practical Hydraulics and Water Resources Engineering

of how to calculate changes in the pressure due to changes in the ground
elevation is shown in Box 3.3.

3.6.2 Measuring velocity

The energy equation is a useful tool for measuring velocity. This is done by
stopping a small part of the [aw and measuring the pressure change that
results from this. Airline pilots use this principle to measure airspeed.

When the water (or air) [ows around an object (Figure 3.7a), most of it
is de [edted around it but there is one small part of the [aw which hits the
object head-on and stops. Stopping the water in this way is called stagna-
tion and the point at which this occurs is the stagnation point. Applying the
energy equation to the main stream and the stagnation point

2 2
&+U—1+z1:&+y—s+zs
pg  2g pg  2¢

Assuming the [awv is horizontal
%1 =X

As the water stops at the stagnation point

v, =0,

and so
ho Vi P
Pg 28 pg

Rearranging this equation to bring all the velocity and pressure terms
together

vi _ b _ D1

2¢  pg  pg

Rearranging it again for an equation for velocity v,

v = 2@%‘1’1['
1 Eip =

By measuring pressure in the mainstream p, and the pressure at the stag-
nation point p, it is possible to calculate the main stream velocity. This idea
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BOX 3.3 EXAMPLE: CALCULATING PRESSURE
CHANGES DUE TO ELEVATION CHANGES

A pipeline is constructed across undulating ground (Figure 3.6). Calculate the
pressure at point 2 when the pressure at point | is 150 kN/m? and the eleva-
tion of point 2 is 7.5 m above point |.

Assuming no energy loss along the pipeline, this problem can be solved
using the energy equation

total energy at | = total energy at 2

2 2
Vi v
—P'+—'+z,:—P2+—2+

Z.
Ppg  2g pg  2g

As the pipe diameter is the same throughout, the velocity will also be the
same, as will the kinetic energy. So the kinetic energy terms on each side of
the equation cancel each other out.

The equation simplifies to

p _ P

— + zZ = — + Z.
Pg Pg
Rearranging the components to calculate the pressure at 2
L =7 -z
pg pPg

All elevation measurements are made from the same datum level and so
z,—z,=75m.

This means that

=P 7.5m
Pg
and so
b — p, = 1,000 x 9.81 x 7.5
= 73,575N/m’ = 73.6 kN/m®
known pressure at point | = 150 kN/m?
and so

pressure at point 2 = 150 — 73.6 = 76.4 kN/m?.

So, the energy equation predicts a drop in pressure at point 2 which is
directly attributed to the elevation rise in the pipeline.
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@) Most flow is deflected

Pressure = p;

Velocity = v,
Potential =z, Stagnation — flow stops at this point
Pressure = p
Velocity = v;=0
Potential = z
(b) Pitot tube

1= !

| ps =125 kN/m?
v,=0
p; = 120 kKN/m? 3
— = ——= Main flow 6
V,=?

Stagnation point

© |
Water level rise due "_"L_—-—"—'—"'—
to stagnation of flow - :

Bridge pier

~1 4

~h

Figure 3.7 Measuring velocity using stagnation points. (a) Stagnation point when water
flows around an object. (b) Measuring velocity with a pitot tube. (c) Stagnation
point in front of a bridge pier.

is used widely for measuring water velocity in the pipes using a device
known as a pitot tube (Figure 3.7b). The stagnation pressure p, on the end
of the tube is measured together with the general pressure in the pipe p;.
The velocity is then calculated using the energy equation (see Box 3.4). One
disadvantage of this device is that it does not measure the average velocity
in a pipe but only the velocity at the point where the pitot tube is located.
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However, this can be very useful for experimental work that explores the
changes in velocity across the diameter of a pipe to produce velocity pro-
[Iek. Pitot tubes are also used on aircraft to measure the aircraft’s velocity.
As both the air and the aircraft are moving, the pilot will adjust the velocity
reading to take account of this.

BOX 3.4 EXAMPLE: CALCULATING THE
VELOCITY IN A PIPE USING A PITOT TUBE

Calculate the velocity in a pipe using a pitot tube when the normal pipe oper-
ating pressure is 120 kN/m? and the pitot pressure is 125 kN/m? (Figure 3.7b).
Although there is an equation for velocity given in this text, it is a good idea
at first to work from basic principles to build up your confidence in its use.
The problem is solved using the energy equation. Point | describes the main
flow and point s describes the stagnation point on the end of the pitot tube

2 2
Vi v
ﬂ+7|+2|:&+73+

pg 2 pg 2
At the stagnation point
v,=0.
And as the system is horizontal
z,=2z,=0.

This reduces the energy equation to

PP
Pg  2g pg

All the values in the equation are known except for v, so calculate v,

120,000 v _ 125,000
,000 x 9.81 2 x 981 1,000 x 9.8l
2
1223+ = 1274
2g
VZ

! =12.74-12.23 = 05Im

2 x 9.8l

v = 42 x981x051 =3.16m/s
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Stagnation points also occur in the channels. One example occurs at
a bridge pier (Figure 3.7c). Notice how the water level rises a little just
in front of the pier as the kinetic energy in the river changes to pressure
energy as the [ow stops. In this case, the pressure rise is seen as a rise
in water level. Although this change in the water level could be used to
calculate the velocity of the river, it is rather small and dif [cdlt to mea-
sure accurately. So, it is not a very reliable way of measuring velocity in
channels.

3.6.3 Orifices

Ori [cds are usually gated openings at the bottom of tanks and reservoirs
used to control the release of water [oW into a channel or some other
collecting basin (Figure 3.8a). They are mostly rectangular or circular
openings. The energy equation makes it possible to calculate the dis-
charge released through an orilcd by [rst calculating the [aw velocity
from the ori[cd and then multiplying it by the area of the opening. One
important proviso at this stage is that the ori[cd must discharge freely

(@ p,=0
v;=0

%0
© '
(b)
&

Jet is smaller than

[ orifice

Potential Kinetic i

energy energy ——
="
! e

} Coefficient of contraction C, = 0.6

|
1

Figure 3.8 Flow through orifices. (a) Typical orifice flow. (b) Changing potential energy
into kinetic energy. (c) Flow contraction as it leaves an orifice.
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and unhindered into the atmosphere, otherwise this approach will not
work. Some oril[cds do operate in submerged conditions and this does
affect the [awv.

The energy equation for an ori[cd in a tank (Figure 3.8a) is

2
v v
171_|_1_|_z1:l70_|_o_'_zO

pg  2g P 2¢

Note the careful choice of the points for writing the energy terms. Point
1 is chosen at the water surface in the tank and point O is at the centre of
the ori [cd.

At the water surface, the pressure is atmospheric and so is assumed to be
zero (remember all pressures are measured relative to atmospheric pressure
which is taken as the zero point). As the water in the tank is not moving,
the kinetic energy is also zero. So, all the initial energy is potential. At the
ori [cd, the jet comes out into the atmosphere and as the jet does not burst
open it is assumed that the pressure in and around the jet is atmospheric
pressure, that is, zero. So, the equation reduces to

2

2= —+z
1 2g 0

Rearranging this equation

where h is the depth of water from the surface to the centre of the ori [cd.
Now, rearrange the equation to calculate v,

Vg = w[2g/o

Evangelista Torricelli (1608-1647) [rst made this connection between
the pressure head available in the tank and the velocity of the emerging jet
some considerable time before Bernoulli developed his energy equation. As
a pupil of Galileo, he was greatly in [ugnced by him and applied his concepts
of mechanics to water falling under the in [ugnce of gravity. Although, the
above equation is now referred to as Torricelli’s law, he did not include the
2g term. This was introduced much later by other investigators.

Torricelli sought to verify this law by directing a water jet from an ori [cd,
vertically upwards (Figure 3.8b). He showed that the jet rose to almost the
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same height as the free water surface in the tank showing that the poten-
tial energy in the tank and the velocity energy at the ori [cd were equal. So
knowing the pressure head available in a pipe, it is possible to calculate the
height to which a water jet would rise if a nozzle was attached to it — very
useful for designing fountains!

The velocity of a jet can also be used to calculate the jet discharge using
the discharge equation

O =av.

So
O = a2gh.

The area of the ori[cd a is used in the equation because it is easy to mea-
sure but this means the end result is not so accurate because the area of the
jet of water is not the same as the area of the ori [cd. As the jet emerges and
[owvs around the edge of the ori [c4, it follows a curved path and so the jet
ends up smaller in diameter than the ori [cd (Figure 3.8c). The contraction
of the jet is taken into account by introducing a coefficient of contraction
C, which has a value of approximately 0.6. So, the discharge formula now
becomes

O = C.a.j2gh.

Although it might be interesting to work out the discharge from holes in
tanks, a more useful application of Torricellis’s law is the design of under-
[owv gates for both measuring and controlling discharges in open channels
(see Section 6.2).

3.6.4 Pressure and velocity changes in a pipe

A more general and very practical application of the energy equation is to
predict pressures and velocities in pipelines as a result of changes in ground
elevation and pipe sizes. An example in Box 3.5 shows just how versatile
this equation can be.

3.7 SOME MORE ENERGY APPLICATIONS

3.7.1 Flow through narrow openings

When water [awvs through narrow openings in pipes and channels, such as
valves or gates, there is a tendency to assume they are constricting the [Qiv.
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BOX 3.5 EXAMPLE: CALCULATING PRESSURE
CHANGES USING THE ENERGY EQUATION

A pipeline carrying a discharge of 0.12 m3/s changes from 150 mm diameter
to 300 mm diameter and rises through 7 m (Figure 3.9). Calculate the pres-
sure in the 300 mm pipe when the pressure in the 150 mm pipe is 350 kN/m?2.

This problem involves changes in pressure, kinetic and potential energy,
and its solution requires both the energy and continuity equations. The first
step is to write down the energy equation for the two points in the systems
| and 2

pg 2 pg  2g

The next step is to identify the known and unknown values in the equation.
b, z, and z, are known (z, — z, = 7 m) values but p, is unknown and so are v,
and v,. First, determine v, and v, use the continuity equation

Q=va.

py=?
Q=0.12md%s
d, =300 mm
Z,=7m

p; = 350 KN/m?
Q=0.12mds

d; =150 mm

z;=0m

Figure 3.9 Calculating changes in pressure in a pipeline.
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Rearranging this to calculate v

v=9
a
And so
vlzg:and vz—g.
a, a,

The pipe areas are not known but their diameters are known, so next
calculate their cross sectional areas

2 2
o = 190 _ MO 6618 m2
4 4
2 2
o = _T03 557 0
4 4

Now, calculate the velocities

v, = Q = 0.120 = 6.67 m/s
a 0018

vy = Q = 0.120 =171 m/s.
a, 0.07

Putting all the known values into the energy equation

350,000 . 667°  _p, L7F
1,000 x 9.81 2 x 9.8 pg  2x98l

+7

Note the pressures in the equation are in N/m? and not in kN/m?. The
equation simplifies to

3568 +226 = P2 + 015+ 7,
pg

Rearranging this equation for p,

123
Pg

3568 +226-0.15-7

30.8 m head of water.
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To determine this head as a pressure in kN/m? use the pressure-head

equation

pressure = pgh
p, = 1,000 x 9.81 x 30.8
= 302,000 N/m? = 302 kN/m?

But this is not always the case. The reason for this misunderstanding is that
we live in a solid world and so we logically apply what we see to water.
People cause chaos when too many try to get through a narrow opening at
the same time. So surely water must behave in a similar way. Well this is
where water surprises everyone — it behaves quite differently (Figure 3.10).

Continuity and energy control what happens when water [aWs along a
pipe and meets a constriction. As the pipe becomes narrower, the water,
rather than slowing down, actually speeds up. The continuity equation tells
us that when the area is smaller the velocity must be greater. But surely the
constriction must slow the whole discharge and hence the velocity. Well
no — the discharge is governed by the total energy available to drive the
[awv and as there is no change in the total energy between the main pipe
and the constriction, the discharge in the system does not change. So, the

(@) Rise in pressure
Drop in velocity

People
People cause blockage
in a narrow passage
(b) Drop in pressure
Increase in velocity
Water

Water flows quickly and
smoothly through a constriction

Figure 3.10 People and water flow differently through narrow passages. (a) People flow.
(b) Water flow.
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[owv passes quickly and smoothly through the constriction without fuss. It
would seem that water behaves much more sensibly than people!

What does happen of course is that the pressure in the system changes
at the constriction. The kinetic energy increases and this results in a cor-
responding decrease in the pressure energy. So a narrow pipe, or indeed any
other constriction such as a partly open valve, does not throttle the [awv, it
just speeds it up so that it goes through much faster. You can see this when
you open and close a tap at home. The discharge through a partially open
tap is almost the same as that through a fully open one. The total energy
available is the same but the [awv area is smaller when it is partially opened
and so the water just [aWvs through with a greater velocity. Of course, the
velocity is eventually slowed when the tap is almost shut and at this point
energy losses at the tap dominate the [Qv.

This same principle also applies to [aWv in open channels. When [aWv is
constricted, it speeds up (Kinetic energy increases) and the water level drops
(pressure energy decreases). You can see this effect as water [aws through
channel constrictions at bridges and weirs (this is discussed in detail in
Chapters 4 and 5).

Some people have suggested that the design of sports stadiums, which can
easily become congested with people, could bene [X¥rom linking the [awv of
people to the [awv of water. Some years ago, there was a major accident at
a football stadium in Belgium in which many people were crushed to death
when those at the rear of the stadium suddenly surged forward in a nar-
row tunnel pushing those in front onto [x&d barriers and crushing them.
At the time it was suggested that stadiums should, in future, be designed
with hydraulics in mind so the layout, size and shape of tunnels and barriers
would allow people to ‘[alv’ smoothly onto the terraces in a more orderly
and safe manner. This is a dangerous analogy because people do not ‘ [aw’
like water. They tend to get stuck in narrow passages and against solid barri-
ers whereas water behaves much more sensibly, [awing around barriers and
speeding up and slowing down when needed to get through the tight spots.

Research at Buckinghamshire New University undertaken to make sure
the London 2012 Olympic games ran smoothly found that fast moving peo-
ple in corridors and tunnels become slow, shuf[ing, impatient and grumpy
when the crowd density reached four people per square metre. At that point
people just bump into each other and the *[oWw’ drops dramatically. They
also found that people approaching a narrow doorway moved fastest along
the edges of the tunnels rather than in the middle. This is surprising as water
moves fastest in the middle and is very slow near the pipe boundary. So, in
order to get people through a doorway faster they created a barrier (a circu-
lar pillar in the middle of the tunnel) just upstream of the opening. This split
the [QWwv into two and created two additional ‘edges’. Rather than hindering
the [aw, this actually increased the [aWv. So next time you are in a slow mov-
ing tunnel, do not stay in the middle of the [Qwv; always move to the side
and you will get through faster.
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3.7.2 How aeroplanes fly

Although, some people think that aircraft are lifted much in the same way as
a [afistone is lifted as it skips across water (see Section 3.13), this is not the
way it works. Aircraft rely on the energy equation to [y]An aircraft wing is
specially shaped so that the air [oWv path is longer over the wing than under
it (Figure 3.11a). So when an aircraft is taking off, the air moves faster over
the wing than under it. This is necessary to maintain continuity of air [ow
around the wing. The result is an increase in Kinetic energy over the wing.
But the total energy around the wing does not change and so there is a corre-
sponding reduction in the pressure energy above the wing. This means that
the pressure above the wing is less than that below it and so the wing experi-
ences a lift force. This can be a signi [cant force; and as we witness everyday
it can lift hundreds of tons of aeroplane into the air. It never ceases to amaze
people and it works every time. Have you noticed that aeroplanes usually
take-off into the wind? This is because the extra wind velocity increases
the kinetic energy and provides extra lift. This is particularly important at
take-off when an aeroplane is carrying its full fuel load and is at its heaviest.

The same principle is used in reverse on racing cars. In this case, the wing
is upside down and located on the back of the car. The velocity of the air

(@) Lift Low pressure — high velocity
force

Air flow

High pressure — low velocity

(b) © f I

-
—
@D
—

\

{ Low pressure —

k\ produced by blowing Spoon drawn into

<« jet by low pressure
caused by spoon
curvature

- ——""_-i——’

LT / High pressure — air is still
/

* Strip of paper 200 mm x 20 mm

Figure 3.11 How aeroplanes fly. (a) Airflow around an aircraft wing. (b) Practical demon-
stration of lift. (c) Feeling the force with a spoon.
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[owving over it, due to the forward movement of the car, produces a down-
ward thrust which holds the car [rthly on the road. The faster the car the
greater is the down thrust which improves road holding and helps drivers
to maintain high speeds even when cornering.

You can demonstrate this lift force yourself (Figure 3.11b). Tear off a
strip of paper approximately 20 mm wide and 200 mm long. Grip the paper
[rmhly in your teeth and blow gently across the top of the paper. You will
see that it rises to a horizontal position. The blowing action increases the
velocity of the air and hence reduces the pressure. The pressure of the still
air below the paper is higher than above it and so the paper lifts — just like
the aeroplane.

One way to feel the substantial force involved is to hold a spoon with its
convex side close to water running from a tap (Figure 3.11c). Surprisingly,
the water does not push the spoon away, rather it draws it into the water.
This is because the water velocity increases as it [oWws around the spoon
causing a drop in the pressure. This draws the spoon into the jet with sur-
prising force. It is also the reason for that unpleasant feeling when you have
a shower and the cold plastic curtain seems to stick to your body. It is all
about pressure and velocity changes.

3.7.3 Airflow between buildings

Most people have noticed how suddenly the wind becomes much stronger in
the gaps between buildings (Figure 3.12). This is another example of the effect
of changing energy. A narrow gap causes an increase in wind velocity and a
corresponding drop in air pressure. The pressure drop can cause doors to bang
because the pressure between the buildings is lower than the pressure inside
them (remember the air inside is still and at normal atmospheric pressure).

Building

Gentle
breeze : "

7

Building

r

- Strong wind — high velocity
and low pressure

Figure 3.12 Applying the energy equation to airflow between buildings.
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3.7.4 Fluid injectors

Farmers use [uid injectors to inject fertiliser into irrigation systems.
Some use a pump which pushes the fertiliser into the pipe. But some are
cleverer than this and can inject [uid without using additional energy. A
short, narrow section of pipe (a venturi) is located in the main irrigation
pipeline which causes the velocity to increase and the pressure to drop.
Upstream of the venturi (where the pressure is high), a small diameter
pipe takes off some of the [0 and passes it through a fertiliser tank. A
second pipe takes the mixture of water and fertiliser back to the pipeline
where it is connected to the venturi section (where the pressure is low).
So, the pressure drop caused by the change in pipe diameter drives the
injector. The turbulence just downstream of the venturi, where the pipe
expands again to its original size, ensures that the fertiliser is well mixed
in the [aw.

3.7.5 A very useful application

One very useful application of the energy equation is for measuring dis-
charge. Changing the energy in pipes and channels produces changes in
pressure which can be more easily measured than velocity. Using the energy
and continuity equations, the pressure change is used to calculate velocities
and hence discharges. (see Sections 4.10 and 6.7).

3.8 MOMENTUM

The momentum equation is the third tool in the box. Momentum is about
movement and the forces which cause it (see Section 1.10). It is the link
between force, mass and velocity and is used to calculate the forces created
by water as it moves through pipes, hydraulic structures and machines like
pumps and turbines.

The momentum equation is normally written as

force (N) = mass [awv (kg/s) x change in velocity (m/s).

Mass [aWv can also be written as

mass density (kg/m?) x discharge (m3/s)

PQ.

mass flow (kg/s)

And

velocity change = v, — v,
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where v, and v, represent two velocities in a system. Put all these into the
momentum equation

Force (F) = pQ (v, — vy).

This is now in a form that is useful for calculating forces in hydraulics.
An example of the use of this equation is shown in Box 3.6.

BOX 3.6 EXAMPLE: CALCULATING THE FORCE
ON A PLATE FROM A JET OF WATER

A jet of water of diameter 60 mm and a velocity of 5 m/s hits a vertical plate.
Calculate the force of impact of the jet on the plate (Figure 3.13).
Remember, when dealing with momentum:

* Forces and velocities are vectors and so their direction is important as
well as their magnitude.

* The force of the water jet on the plate is equal to the force of the plate
on the water. They are the same magnitude but in opposite directions
(remember Newton’s third law).

Use the momentum equation to calculate the force on the plate

—F=pQ (v,—v).

Notice that flow and forces from left to right are assumed to be in a posi-
tive direction and so those which are from right to left are negative. F is the
force of the plate on the water and is in the opposite direction to the flow,
and so it is negative (working out the right direction can be rather tricky
sometimes and so working with the momentum equation does take some
practice).

Reversing all the signs in the above equation makes F positive

F=pQ (v, = vy).
The next step is to calculate the discharge Q

nd®
—vag=v X ——
< 4

10.06”
X
4

5 = 0.014m’/s
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For this problem v, =0 because the velocity of the jet after impact in the
direction of the flow is zero. So, putting in the known values into the momen-
tum equation

F =1,000 x 0.014 x (5 - 0)
F=70N

. Vertical plate

v, =5m/s

Water jet 60 mm dia

Force F?

v,=0

Figure 3.13 Applying momentum.

3.9 REAL FLUIDS

The assumption made so far in this chapter is that water is an ideal [uid.
This means it has no viscosity and there is no friction between the [aw and
the boundaries, such as the inside of a pipe or the sides and bed of a channel.
Water is a real [uid but its viscosity is low and so ignoring this has little or
no effect on the design of pipes and channels. However, the friction between
the [awv and the boundary is important and cannot be ignored for design
purposes. In fact, this is an important part of the design. We use a modi [ed
version of the energy equation to take account of this.

3.9.1 Taking account of energy losses

When water [owvs along pipes and channels, energy is lost from friction between
the water and its boundaries, and we can account for this in the energy equa-
tion. Writing the energy equation for points 1 and 2 along a pipeline carrying a
real [uid needs an additional term /4, to describe the energy loss between them

2
&+U71+z1 p2+?+z2+bf

pg  2g pg  2g
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h; is the most important element in this equation for determining the
size of pipe or channel needed to carry a given [oWw. The question is how to
measure or calculate it and what factors in [ugnce its magnitude. This was
the challenge the nineteenth-century scientists faced, investigating [uid
[owv and the results of their work now form the basis of all pipe and chan-
nel design procedures. But more about this in Chapters 4 and 5.

3.9.2 Cavitation

Real [uids suffer from cavitation and it can cause lots of problems, particu-
larly in pumps and control valves. It occurs when a [id is moving very fast
and as a consequence the pressure drops to very low values approaching
zero (vacuum pressure).

The control valve on a pipeline provides a good example (Figure 3.14a).
When the valve is almost closed, the water velocity under the gate can
be very high. This also means high kinetic energy, which is gained at the

et o r—
(a)
—
- - - -
Increasing pressure —

Very low pressure — cavities collapse causing

cavities form damage to pipe wall
(b) Increasing pressure Needle jet of

—_— = -~ Wwater can
damage pipe wall

Stages of cavity collapse

Figure 3.14 Cavitation. (a) Cavitation under a sluice gate. (b) How cavitation bubbles
collapse.
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expense of the pressure energy. If the pressure drops below the vapour pres-
sure of water (this is approximately 0.3 m absolute), bubbles called cavi-
ties start to form in the water. They are very small (less than 0.5 mm in
diameter) but there are thousands of them and they give water a milky
appearance. The bubbles are [Iéd with water vapour and the pressure
inside them is very low. But as the bubbles move under the gate and into
the pipe downstream, the velocity slows, the pressure rises and the bubbles
begin to collapse. It is at this point that the danger arises. If the bubbles col-
lapse in the main [awv they do no harm, but if they are close to the pipe wall
they can do a great deal of damage. Notice the way in which the bubbles
collapse (Figure 3.14b). As the bubble becomes unstable, a tiny needle jet
of water rushes across the cavity and it is this which can do great damage
even to steel and concrete because the pressure under the jet can be as high
as 4,000 bar! (see Section 7.4.4 for more details of cavitation in pumps).

Some people confuse cavitation with air entrainment, but it is a very
different phenomenon. Air entrainment occurs when there is turbulence
at hydraulic structures and air bubbles are drawn into the [aW. The milky
appearance of the water is similar but the bubbles [Iéd with air will not
harm pumps and valves. Indeed, they can act as a cushion and protect
structures from damage.

3.9.3 Boundary layers

Friction between water [aw and its boundaries and the internal friction
(viscosity) within the water gives rise to an effect known as the boundary
layer. Water [oWwing in a pipe moves faster in the middle of the pipe than
near the pipe wall. This is because friction between the water and the pipe
wall slows down the [QWv. Very near to the pipe wall, water actually sticks
to it and the velocity is zero, although it is not possible to see this with the
naked eye. Gradually, the velocity increases further away from the wall
until it reaches its maximum velocity in the centre of the pipe. To under-
stand how this happens, imagine the [aw is like a set of thin ‘plates’ that
can slide over each other. The plate nearest to the wall is not moving and
hence it tries to slow down to the plate next to it — the friction between
the plates comes from the viscosity of the water. Plates further away from
the wall are less affected by the boundary and so they move faster until the
ones in the middle of the [0 are moving fastest. All the [owv affected by
the pipe wall in this way is called the boundary layer. However, the use of
the word layer can be misleading and is often confused with the layer of
water closest to the pipe wall. My analogy with the sliding plates also does
not help! So just to be clear, the boundary layer refers to all the [aw which
is affected by friction with the boundary. In the case of a pipe, the in [ugnce
of the boundary is felt across the entire [Qv.

A graphical representation of the changes in velocity near a boundary
is called the velocity profile (Figure 3.15a). The velocity changes from
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Figure 3.15 Boundary effects. (a) Velocity profiles. (b) Boundary layer growth.

zero near the boundary to a maximum in the centre of a pipe or channel.
Compare this with the velocity pro el for an ideal [uid. There is no vis-
cosity and no boundary friction and so the velocity is the same across the
entire [Qwv.

Boundary layers grow as water enters a pipeline (Figure 3.15b). They
quickly develop over the [rst few metres until they meet in the middle.
From this point onwards the pipe boundary in [uénces the entire [OW in
the pipe. In channels, the boundary effects of the bed and sides similarly
grow over a few metres of channel and soon in [udnce the entire [aWv. When
the boundary layer [II3 the entire [QW it is said to be fully developed. This
fully developed state is the basis on which all pipe and channel formulae are
based in Chapters 4 and 5.

3.9.3.1 The Earth’s boundary layer

When the wind blows across the Earth’s surface, it produces a boundary
layer (Figure 3.16a). The wind is much slower near the ground where it is
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Figure 3.16 Earth’s boundary layer. (a) When the wind blows. (b) Geostrophic wind and
the Ekman spiral. (c) How icebergs move. (d) Upwelling.

most affected by friction between the air and the Earth’s surface. Its in [uénce
extends many metres above the Earth’s surface. For this reason, it is impor-
tant to specify the height at which wind speed is measured in meteorological
stations. At 2 m above the ground, the wind is much slower than at 4 m.

An interesting feature of the Earth’s boundary layer is that not only
does the wind slow down near the Earth’s surface but it also gradually
changes direction (Figure 3.16b). In the upper atmosphere, well beyond
the boundary layer, the isobars (the lines of equal pressure) in a depression
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circle around the point of lowest pressure and the direction of the wind is
always parallel to the isobars. This is because there is a balance between
two important forces; the Coriolis force, which is a small but signi [cant
force that comes from the Earth’s rotation, and the force trying to pull the
air into the centre of the depression because of the difference in pressure.
So, the wind circulates around the centre of the depression and is known as
the Geostrophic Wind.

The Coriolis force does not affect us as individuals as we are too small
but it does affect the movement of large masses, such as the air and the sea.
Nearer the Earth’s surface, in the boundary layer, the wind slows down and
this reduces the effect of the Coriolis force. The two forces are now out of
balance and hence the wind direction gradually changes as it is pulled in
towards the centre of the depression. This is why the ground surface wind
direction on weather maps is always at an angle to the isobars and point-
ing inwards towards the centre of the depression. This gradual twisting of
the wind direction produces a spiral, rather like a spiral staircase, which is
called the Ekman Spiral.

Vagn Walfrid Ekman (1874-1954), a Swedish scientist, [rst observed
this spiral at sea. He noticed that in a strong wind, icebergs do not drift in
the same direction as the wind but at an angle to it (Figure 3.16c). Surface
winds can cause strong seawater currents and although the surface cur-
rent may be in the direction of the wind, those currents below the surface
are in[uénced both by the boundary resistance from the sea bed and the
Coriolis force from the Earth’s rotation. The effect is similar to that in the
atmosphere. The lower currents slow down because of friction and gradu-
ally turn under the in [Luénce of the Coriolis force. So at the sea surface, the
water is moving in the same direction as the wind, but close to the sea bed
it is moving at an angle to the wind. As icebergs [aat over 90% submerged,
their movement follows the water current rather than the wind direction
and so they move at an angle to the wind.

This spiral effect is vital to several [SHing communities around the world
and is referred to as up-welling (Figure 3.16d). In Peru when the surface
wind blows along the coast line, the boundary layer and the Coriolis force
conspire to induce a current along the sea bed at right angles to the wind
direction. This brings all the vegetative debris and plankton, on which [sA
like to feed, into the shallow waters of the shoreline and so the [SHing is
very good. However, when the wind blows in the opposite direction, the
current is reversed and all the food is washed out to sea leaving the shallow
coastal [SHing grounds bare and the [SHing industry devastated.

3.10 DRAG FORCES

Boundary layers occur around all kinds of objects, such as water [QWwv
around ships and submarines, air [oWw around aircraft and balls thrown
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through the air. Friction between the object and the [uid slows them down
and it is referred to as a drag force. You can feel this force by putting your
hand through the window of a moving car or in a stream of [QWwing water.

Sir George Stokes (1819-1903), an eminent physicist, was one of the
[rst people to investigate drag by examining the forces on spheres falling
through different [uids. He noticed that the spheres fell at different rates,
not only because of the viscosity of the [uids but also because of the size of
the spheres. He also found that the falling spheres eventually reach a con-
stant velocity which he called the terminal velocity. This occurred when
the force of gravity causing the balls to accelerate was balanced by the
resistance resulting from the [uid viscosity and the size of the balls.

Stokes also demonstrated that for any object dropped in a [uid (or a sta-
tionary object placed in a [awing [uid which is essentially the same) there
were two types of drag: surface drag or skin friction, which resulted from
friction between the [uid and the object, and form drag which resulted
from the shape and size of the object.

Water [awing around a bridge pier in a river provides a good example of
the two types of drag. When the velocity is very low, the [oWw moves around
the pier as shown in Figure 3.17a. The water clings to the pier and in this
situation there is only surface drag and the shape of the pier has no effect.
The [awv pattern behind the pier is the same as the pattern upstream. But as
the velocity increases, the boundary layer grows and the [aw can no longer
cling to the pier and so it separates (Figure 3.17b). It behaves like a car that is
travelling too fast to get around a tight bend. It spins away from the pier and
creates several small whirl pools which are swept downstream. These are
called vortices or eddies, and together they form what is known as the wake,
which gets wider as it gradually draws in more of the river [aw through fric-
tion (Figure 3.17b). The [awv pattern behind the pier is now quite different
from that in front and in the wake the pressure is much lower than in front.
Itis this difference in pressure that produces the form drag. It is additional to
the surface drag and its magnitude depends on the shape of the pier. Going
back to your hand through the car window, notice how the force changes
when you place the back or side of your hand in the direction of the [awv.
The shape of your hand in the [aW determines the form drag.

Form drag is usually more important than surface drag and it can be
reduced by shaping a bridge pier so that the water [QWwvs around it more
easily and separation is delayed or avoided. Indeed, if separation could be
avoided completely then form drag would be eliminated and the only con-
cern would be surface drag. Shaping piers to produce a narrow wake and
reduce form drag is often called streamlining (Figure 3.17c). This is the
basis of design not just for bridge piers but also for aircraft, ships and cars —
to reduce drag and so increase the speed or reduce the energy requirements.
As you might imagine the study of drag is now a very sophisticated science
as manufacturers develop computer modelling and use wind tunnels to get
the best designs.
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Swimmers too can bene [Tfrom reducing drag. This is particularly impor-
tant at competitive levels when a few hundredths of a second can mean the
difference between a gold and a silver medal. Approximately, 90% of the
drag on a swimmer is form drag, only 10% is surface drag. Some female
swimmers try to reduce form drag by squeezing into a swimsuit 2 or 3 sizes
too small for them in order to improve their shape in the water.

Although women swimmers may seem to have an advantage in having
a more streamline shape than bulky males, their shape does present some
hydraulic problems. A woman’s breasts cause early [oWv separation which
increases turbulence and form drag. One swimwear manufacturer has
found a solution to this by using a technique used by the aircraft industry
to solve a similar problem. Aircraft wings often have small vertical spikes
on their upper surface and these stop the [aw from separating too early by
creating small vortices, that is, zones of low pressure close to the wing sur-
face. This not only reduces form drag signi [cantly but also helps to avoid
stalling (very early separation), which can be disastrous for an aircraft.
The new swimsuit has tiny vortex generators located just below the breasts
which cause the boundary layer to cling to the swimmer. This stops the
boundary layer from separating and hence reduces form drag. The same
manufacturer has also developed a ribbed swimsuit, which creates similar
vortices all along the swimmer’s body to try and stop the [ov from sepa-
rating. The manufacturer claims a 9% reduction in drag for the average
female swimmer over a conventional swimsuit.

Dolphins probably have the answer for reducing drag. They are well
known for their natural shape and skin for swimming. Both their form and
surface drag are very low, which enables them to move through the water
with incredible ease and speed — something that human beings have been
trying to emulate for many years!

There is a way of calculating drag force

drag force = %Cpavz

where p is [uid density (kg/m?), a is the cross-sectional area (m?), v is veloc-
ity (m/s) and C is drag coef [cibnt. The coef [Ciknt C is dependent on the
shape of the body, the [aWv velocity and the [uid density.

3.10.1 Stopping supertankers

Supertankers, because of their enormous size, are designed with low drag
in mind so they can travel the seas with only modest energy requirements to
drive them. The problem comes when they want to stop. When the engines
stop, they can travel for several kilometres before drag forces [nally stop
them. How then do you put on the brakes on a supertanker? One way is to
increase the ship’s form drag by taking advantage of the stagnation point
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at the bow of the ship to push water through an inlet pipe in the bow and
out at the sides of the ship (Figure 3.17d). This [awv at right angles to the
movement of the ship causes the boundary layer to separate and greatly
increase the form drag. It is as if the ship is suddenly made much wider and
this upsets its streamline shape.

3.11 EDDY SHEDDING

Eddies which form in the wake around bridge piers can also cause other
problems besides drag. Eddies are not shed from each side of the pier at
the same time but alternately, [rst from the one side, then from the other.
Under the right [owv conditions, large eddies can form and the alternate
eddy shedding induces a sideways force which pushes the pier from side to
side in a slow rhythmic vibration (Figure 3.18a). This problem is not just
con [néd to bridge piers. It is a problem for tall chimneys and for bridge
decks in windy conditions. The vibration can become so bad that structures
collapse.

A famous suspension bridge, the Tacoma Narrows Bridge in the United
States, was destroyed in the 1930s because of this problem (Figure 3.18Db).
In order to protect traf [crom high winds blowing down the river chan-
nel, the sides of the bridge were boarded up. Unfortunately, the boarding
de [edted the wind around the bridge deck, the air [QWv separated forming
large eddies, and this set the bridge deck oscillating violently up and down.
The bridge deck was quite [exible as it was a suspension bridge and could
in fact tolerate quite a lot of movement but this was so violent that eventu-
ally it destroyed the bridge.

The solution to the problem was quite simple. If the side panels had been
removed, this would have stopped the large eddies from forming and there
would have been no vibration. So, next time you are on a suspension bridge
and a strong wind is blowing and you are feeling uncomfortable be thank-
ful that the engineers have decided not to protect you from the wind by
boarding up the sides.

A similar problem can occur around tall chimneys when eddies are shed
in windy conditions. To avoid large eddies forming, a perforated sleeve or
a spiral collar is placed around the top of the chimney. This breaks up the
[aw into lots of small eddies which are usually quite harmless.

3.12 MAKING BALLS SWING

Sports players soon learn how useful boundary layers can be when they
realise that balls can be made to move in a curved path through the air and
so confuse their opponents. A good example of this is the way some bowl-
ers are able to make a ball ‘swing’ (move in curved path) in cricket.
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Figure 3.18 Eddy shedding problems. (a) Alternate eddy shedding around a cylinder.
(b) Flow around a bridge deck with solid sides. (c) With open panels.

When a ball is bowled (for non-cricket enthusiasts this means throw), the
air [aws around it and at some point it separates (Figure 3.19). When the
separation occurs at the same point all around the ball then it moves along
a straight path. However, when it occurs asymmetrically, there is a larger
pressure on one side of the ball and so it starts to move in a curved path (i.e.
it swings). The bowler’s task is to work out how to do this.

Laboratory experiments have shown that as the air [aWws around a ball,
it can be either turbulent or laminar (these are two different kinds of [owv
described in Section 4.3.1). When it is turbulent, the air clings to the ball
more easily than when it is laminar. So, the bowler tries to make the air [Qv
turbulent on one side of the ball and laminar on the other. This is done
by making one side very smooth and the other side rough. In cricket, this
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Figure 3.19 Making balls swing. (a) Symmetrical flow around a smooth ball. (b) Asymmet-
ric flow causes ball to swing. (c) High velocity produces an ‘out-swinger’.

situation is helped by a special stitched seam around the middle of the ball
which ensures that the ball is rough enough to create turbulent conditions.
The ball is bowled so that the polished side of the ball is facing the bats-
man and the seam is at an angle to the main direction of travel. The air [alv
on the smooth side separates earlier than on the rough side and so the
ball swings towards the turbulent side. The cross force can be up to 0.8 N
depending on how fast the ball is travelling and may cause a swing of up to
0.6 m in 20 m, which is the length of a cricket pitch. This can be more than
enough to seriously confuse a batsman who may be expecting a straight
ball. This is why bowlers seem to spend so much of their time polishing the
ball on their trousers prior to their run-up in order to get it as smooth as
possible to get the maximum swing. The swing may be in or out depending
on how the bowler holds the ball. However, not all the surprise is with the
bowler. An observant batsman may know what is coming by looking to see
how the bowler is holding the ball and so anticipate the swing.
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Sometimes, strange things happen which even puzzle those who under-
stand hydraulics. Just occasionally, bowlers have noticed that a ball that was
meant to swing in towards the batsman swings away from him instead — an
outswinger. What happens is that when a ball is bowled fast enough, the
entire air [awv around the ball turns turbulent and so the separation occurs
much earlier than for laminar [awv. The stitched seam around the ball now
acts as a ramp causing the air to be pushed away, creating a side force in
the opposite direction to what was expected. This causes great delight for
the bowler but it can give the batsman quite a fright. But most batsmen can
relax as this special swing only occurs when the ball reaches 130-150 km/h
and only a few bowlers can actually reach this velocity. However, some
unscrupulous bowlers have discovered a way of doing this at much lower
velocities. By deliberately roughening the ball on the one side (which is not
allowed) and polishing it on the other (which is allowed), they can bowl an
out swinger at much lower velocities. This caused a major row in cricket in
the early 1990s and again in 2006 when a Pakistani bowler was accused of
deliberately roughening the ball. Imran Khan though was famous for his
high-speed bowling and could produce outswingers without resorting to
such tactics. It is of course allowed for the ball to scuff or become rough
naturally through play but this can take some time.

Causing a ball to spin at the same time as driving it forward can also add
to the complexities of air [owv and also to the excitement of ball sports. Some
famous ball swings in the recent years resulted in the goals scored by the
Brazilian footballer, Roberto Carlos in 1997 and by David Beckham in the
2006 World Cup games. In each case, the goal area was completely blocked
by the opposing team players. As each player kicked the ball, it seemed to
be heading for the corner [ag but instead it followed a curved path around
the defending players and into the goal. They achieved this amazing feat
by striking the ball on its edge causing it to spin, which induced a sideways
force. This, together with the boundary layer effect and a great deal of skill
(and a little luck) produced some of the best goals ever scored. Since those
early days of Beckham and Carlos, lots of players have now mastered the
skills, even children at school seem able to copy the skills as well.

3.13 SUCCESSFUL STONE-SKIPPING

Skipping stones across water has been a popular pastime for many thou-
sands of years (Figure 3.20). Apparently, the Greeks started it and accord-
ing the Guinness Book of Records the world record is held by Kurt Steiner.
It was set in 2003 at 40 rebounds.

Various parameters affect the number of skips such as the shape, weight,
velocity and spin. The stone should ideally be like a small, [aflplate. This was
very much an art until research undertaken at the Institut de Recherche sur
les Phénoménes Hors Equilibre in Marseille and published in Nature in 2004
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Figure 3.20 The author prepares for an attempt on the stone-skipping record.

investigated the physics of this idle pastime. Among the many parameters
investigated, the most important one was the angle at which the stone hits the
water. The ‘magic’ angle, as the researchers described it, was 20° and at this
angle the energy dissipated by the stone impact with the water is minimised.
So at this angle, you will achieve the maximum number of skips. Spinning
the stone also helps because this stabilises the stone owing to the gyroscopic
effect. You may not reach 40 skips but at this angle you have the best chance.

Interestingly, stone skipping is often thought to provide a theory for lift on
an aircraft wing. Instead of water hitting the underside of a stone and lifting
it, the idea of air hitting the underside of an aerofoil has some appeal. But it is
quite wrong. At a wing angle of 20°, an aircraft would be in danger of stall-
ing as the [oWwv above the wing would separate. The wing lift comes from the
energy changes which take place around the wing (see Section 3.7.2).

3.14 SOME EXAMPLES TO TEST
YOUR UNDERSTANDING

1. To measure the discharge in a pipe, a 10 L bucket is used to catch the
[owv at its outlet. If it takes 3.5 s to [Ithe bucket, calculate the dis-
charge in m3/s. Calculate the velocity in the pipe when the diameter is
100 mm (0.35 m/s; 0.0028 m?3/s).
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2. A main pipeline 300 mm in diameter is carrying a discharge of
0.16 m3/s and a smaller pipe of diameter 100 mm is joined to it to
form a tee junction and takes 0.04 m3/s. Calculate the velocity in the
100-mm pipe and the discharge and velocity in the main pipe down-
stream of the junction (5.09 m/s; 0.12 m3/s; 1.7 m/s).

3. A fountain is to be designed for a local park. A nozzle diameter of
50 mm is chosen and the water velocity at the nozzle will be 8.5 m/s.
Calculate the height to which the water will rise. The jet passes
through a circular opening 2 m above the nozzle. Calculate the diam-
eter of the opening so that the jet just passes through without interfer-
ence (3.68 m; opening greater than 61 mm).

4. A pipeline 500 mm diameter is carrying a discharge of 0.5 mé/s at
a pressure of 55 kN/m? reduces to 300 mm diameter. Calculate the
velocity and pressure in the 300 mm pipe (7.14 m/s; 33 kN/m?2).
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Chapter 4

Pipes

4.1 INTRODUCTION

Pipes are a common feature of water supply systems and have many advan-
tages over open channels. They are completely enclosed, usually circular
in section and always [aWw full of water. This is in contrast to channels
which are open to the atmosphere and can have many different shapes and
sizes — but more about channels in Chapter 5. One big advantage of pipes
is that water can [aw uphill as well as downhill, and so land topography
is not such a constraint when taking water from one location to another.

There are occasions when pipes do not [ow full — one example is grav-
ity [oWwv sewers (see Section 8.4). They take sewage away from homes and
factories and often only [ow partially full under the force of gravity in
order to avoid pumping. They look like pipes and are indeed pipes but
hydraulically they behave like open channels. The reason pipes are used for
this purpose is that sewers are usually buried below ground to avoid public
health problems and it would be dif [cult to bury an open channel.

4.2 TYPICAL PIPE FLOW PROBLEM

Pipe [ow problems usually involve calculating the right size of pipe to
use for a given discharge. A typical example is a water supply to a village
(Figure 4.1). A pipeline connects the main storage reservoir to a small ser-
vice (storage) tank just outside the village which then supplies water to indi-
vidual houses. The required discharge (Q m?3/s) for the village is determined
by the water demand of each user and the number of users being supplied
(see Section 8.3). We now need to determine the right size of pipe to use.
A formula to calculate pipe size would be ideal. However, to get there
we [rst need to look at the energy available to ‘push’ water through the
system, so the place to start is the energy equation. But this is a real [uid
problem and hence energy losses due to friction must be taken into account.
So writing the energy equation for two points in this system — point 1 is at

107
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Figure 4.1 Typical pipe flow problem.

the main reservoir and point 2 is at the service tank — and allowing for the
energy loss as water [oWws between the two

2
v
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Points 1 and 2 are carefully chosen in order to simplify the equation and
also the solution. Point 1 is at the surface of the main reservoir where the
pressure p, is atmospheric pressure and so is equal to zero (remember we
are working in gauge pressures). Point 2 is also at the water surface in the
service tank and so p, is zero as well. The water velocities v, and v, in the
reservoir and the tank are very small and hence the kinetic energy terms are
also very small and can be assumed to be zero. This leaves just the potential
energy terms z; and z, and the energy loss term /. So the energy equation
simpli [ed down to

bt = z1 — 2.

2, — %, IS the difference in water levels between the reservoir and the stor-
age tank and this represents the energy available to ‘push’ water through
the system. his the energy loss due to friction in the pipe. The energy avail-
able is usually known and hence this means we also know the amount of
energy that can be lost through friction. The question now is: Is there a link
between energy loss »,and the pipe diameter? The short answer is yes — but
it has taken some 150 years of research to sort this out. So, let us [rst step
through a bit of history and see what it tells us about pipe [Qw.
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4.3 FORMULA TO LINK ENERGY LOSS AND PIPE SIZE

Some of the early research work on pipe friction was done by Osborne
Reynolds (1842-1912), a mathematician and engineer working at the
University in Manchester in the United Kingdom. He measured the pressure
loss in pipes of different lengths and diameters at different discharges with
some interesting results. At low [ows he found that the energy loss varied
directly with the velocity. So when the velocity was doubled, the energy
loss also doubled. But at high [avs the energy loss varied as the square of
the velocity. So, when the velocity was doubled, the energy loss increased
fourfold. Clearly, Reynolds was observing two quite different types of [Qv.
This thinking led to Reynolds classic experiment that established the differ-
ence between what we now call laminar and turbulent [QWv, and formulae
which would enable the energy loss to be calculated for each [Qwv type from
the knowledge of the pipes themselves.

4.3.1 Laminar and turbulent flow

Reynolds experiment involved setting up a glass tube through which he
could pass water at different velocities (Figure 4.2). A thin jet of coloured
dye was injected into the [aWv so that the [aiv patterns were visible.

When the water moved slowly, the dye remained in a thin line as it fol-
lowed the [awv path of the water down the pipe. This was described as
laminar flow. 1t was as though the water was moving like a set of thin
layers, like a pack of cards, each card sliding over the others, and the dye
injected between two of the layers. This type of [aWv rarely exists in nature
and hence is not of great practical concern to engineers. However, you can
see it occasionally under very special conditions. Examples include smoke
rising in a thin column from a chimney on a very still day or a slow [ of
water from a tap that looks so much like a glass rod that you feel you could
get hold of it. Blood [aWv in our bodies is usually laminar.

The second and more common type of [aWw he identi [ed was turbulent
flow. This occurred when water was moving faster. The dye was broken
up as the water whirled around in a random manner and was dissipated
throughout the [ow. Turbulence was a word introduced by Lord Kelvin
(1824-1907) to describe this kind of [aw behaviour.

There are very clear visual differences between laminar and turbulent
[awv but what was not clear was how to predict which one would occur in
any given set of circumstances. Velocity was obviously important. As veloc-
ity increased, so the [aWw would change from laminar to turbulent [awv. But
it was obvious from the experiments that velocity was not the only factor.
It was Reynolds who [rsit suggested that the type of [owv depended not only
on velocity (v) but also on mass density (p), viscosity (1) and pipe diameter
(d). He put these factors together in a way which is now called the Reynolds
Number (R,) in recognition of his work.
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Figure 4.2 Laminar and turbulent flow. (a) Laminar flow. (b) Turbulent flow.

Reynolds No (R,) = %

Note that Reynolds Number has no dimensions. All the dimensions can-
cel out. Reynolds found that he could use this number to reliably predict
when laminar and turbulent [aw would occur.

R, < 2,000 flow would always be laminar.
R, > 4,000 flow would always be turbulent.

Between R,=2,000 and 4,000, he observed a very unstable zone as the
[owv seemed to jump from laminar to turbulent and back again as if the
[ow could not decide which of the two conditions it preferred. This is a
zone to avoid as both the pressure and [oWw [udtuate widely in an uncon-
trolled manner.
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Reynolds Number also shows how important is viscosity in pipe [QWv.
Low Reynolds Number (R, < 2,000) means that viscosity (u) is large com-
pared with the term pvd. So, viscosity is important in laminar [owv and
cannot be ignored. High Reynolds Number (R, > 4,000) means viscosity
is small compared with the pvd term and so it follows that viscosity is less
important in turbulent [aw. This is the reason why engineers ignore the
viscosity of water when designing pipes and channels as it has no material
effect on the solution. Ignoring viscosity also greatly simpli [ed pipeline and
channel design.

It has since been found that Reynolds Number is very useful in other ways
besides telling us the difference between laminar and turbulent [awv. It is
used extensively in hydraulic modelling (physical models rather than math-
ematical models) for solving complex hydraulic problems. When a problem
cannot be solved using some formula, another approach is to construct a
small-scale model in a laboratory and test it to see how it performs. The
guideline for modelling pipe systems (or indeed any fully enclosed system) is
to ensure that the Reynolds Number in the model is similar to the Reynolds
Number in the real situation. This ensures that the forces and velocities are
similar (known as dynamic similarity) so that the model, as near as possible,
produces similar results to those expected in the real pipe system.

Although it is useful to know that laminar [QW exists, it is not impor-
tant in practical hydraulics for designing pipes and channels and so only
turbulent [awv is considered in this text. Turbulent [QWv is very important
to us in our daily lives. Indeed, it would be dif [cdlt for us to live if it was
not for the mixing that takes place in turbulent [aw which dilutes [uilds.
When we breathe out, the carbon dioxide from our lungs is dissipated into
the surrounding air through turbulent mixing. If it did not disperse in this
way, we would have to move our heads to avoid breathing in the same gases
as we had just breathed out. Car exhaust fumes are dispersed in a similar
way; otherwise, we could be quickly poisoned by the intake of concentrated
carbon monoxide. Life could not really exist without turbulent mixing.

4.3.2 Formula for turbulent flow

Several formulae link energy loss with pipe size for turbulent [aWw but one
of the most commonly used today is that devised by Julius Weisbach (1806—
1871) and Henry Darcy (1803-1858). It is called the Darcy—Weisbach
equation in recognition of their work

_ Av?
2gd’

hy

where A is a friction factor, [ is pipe length (m), v is velocity (m/s), g is grav-
ity constant (9.81 m/s?) and d is pipe diameter (m). This formula shows that
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energy loss depends on pipe length, velocity and diameter and also on fric-
tion between the pipe and the [QW as represented by A:

e Length has a direct in [ugnce on energy loss. The longer the pipeline
the greater the energy loss.

e Velocity has a great in [u8nce on energy loss because it is the square of
the velocity that counts. When the velocity is doubled (say by increas-
ing the discharge), the energy loss increases fourfold. It is usual prac-
tice in water supply systems to keep the velocity below 1.6 m/s. This
is done primarily to avoid excessive energy losses but it also helps to
reduce water hammer problems (see Section 4.14).

e Pipe diameter has the most dramatic effect on energy loss. As the pipe
diameter is reduced, so the energy losses increase, not only because of
the direct effect of d in the formula but also because of its effect on
the velocity v (remember the discharge equation Q =va). The overall
effect of reducing the diameter by half (say from 300 to 150 mm) is to
increase b, by 32 times (see Box 4.1).

e Pipe friction A-unfortunately, this is not just a simple measure of pipe
roughness; it depends on several other factors which are discussed in
detail in the next section.

Take care when using the Darcy-Weisbach formula as some textbooks,
particularly American, use f as the friction factor and not A. They are not
the same. The link between them is A = 4f.

4.4 THE L STORY

It would be convenient if A was just a constant number for a given pipe that
depended only on its roughness and hence its resistance to the [aw. But
few things are so simple and A is no exception. Some of the earliest work
on pipe friction was done by Paul Blazius in 1913. He carried out a wide
range of experiments on different pipes and different [Qws, and came to
the conclusion that A depended only on the Reynolds Number, and surpris-
ingly, the roughness of the pipe seemed to have no effect at all on friction.
From this he developed a formula for A

0.316
A= RO.ZS )

Another investigator was Johann Nikuradse (1894-1979) working in
Germany may well have been puzzled by the Blazius results. He set up a
series of laboratory experiments in the 1930s with different pipe sizes and
[owvs. He roughened the inside of the pipes with sand grains of a known
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BOX 4. EXAMPLE: HOW PIPE DIAMETER
AFFECTS ENERGY LOSS

A pipeline 1,000 m long carries a flow of 100 L/s. Calculate the energy loss
when the pipe diameter is 300, 250, 200 and 150 mm. Assume A = 0.04.
The first step is to calculate the velocities for each pipe diameter using the

discharge equation
Q =va.

And so

v=2
a

Use this equation to calculate velocity v for each diameter and then use the
Darcy—Weisbach equation to calculate h. The results are shown in Table 4.1.
Notice, the very large rise in head loss as the pipe diameter is reduced. Clearly,
the choice of pipe diameter is a critical issue in any pipeline system.

Notice how rapidly the velocity and the energy losses increase as the pipe
diameter decreases.

Table 4.1 Effect on head loss of changing pipe diameter

Diameter (m) Pipe area (m?) Velocity (mls) Head loss h;(m)
0.30 0.07 1.43 13.6
0.25 0.049 2.04 333
0.20 0.031 3.22 103.7
0.15 0.018 5.55 418.6

size in order to create different but known roughness. His data showed that
values of A were independent of Reynolds Number and depended only on
the roughness of the pipe. Clearly, either someone was wrong or they were
both right and each was looking at something different.

4.4.1 Smooth and rough pipes

We now know that both investigators were right but they were looking at
different aspects of the same problem. Blazius was looking at [aWws with
relatively low Reynolds Numbers (4,000-100,000) and his results refer
to what are now called smooth pipes. Nikuradse’s experiments dealt with
high Reynolds Number [aWs (greater than 100,000) and his results refer
to what are now called rough pipes. Both Blazius and Nikuradse results are
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shown graphically in Figure 4.3a. This is a graph with a special logarithmic
scale for Reynolds Number so that a wide range of values can be shown
on the same graph. It shows how A varies with both Reynolds Number
and pipe roughness which is expressed as the height of the sand grains (k)
divided by the pipe diameter (d). The Blazius formula produces a single line
on this graph and is almost a straight line.

The terms rough and smooth refer as much to the [owv conditions in
pipes as to the pipes themselves, and so paradoxically, it is possible for

@ Colebrook and white
transition zone

Nikuradse k/d

A curves —
rough pipes
bt
- _\H .
Blazius curve — smooth pipes = i ~
Reynolds number R,
(b) Main flow
(i) Laminar sublayer covers
pipe roughness
Main flow
(i) Laminar sublayer
reduced in thickness
Main flow
(i) Laminar sublayer

very thin

Figure 4.3 A story. (a) Log graph of A and Reynolds number. (b(i)) Smooth pipe flow.
(b(ii)) Transitional pipe flow. (b(iii)) Rough pipe flow.
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the same pipe to be described as both rough and smooth. Roughness and
smoothness are also relative terms. How the inside of a pipe feels to touch
is not a good guide to its smoothness in hydraulic terms. Pipes which are
smooth to the touch can still be quite rough hydraulically. However, a pipe
that feels rough to touch will be very rough hydraulically and very high
energy losses can be expected.

As there are two distinct types of [ow, it implies that there must be
some point or zone where the [aW changes from one to the other. This is
indeed the case. It is not a speci [Cpoint but a zone known as the transi-
tion zone when A depends on both Reynolds Number and pipe roughness
(Figure 4.3a). This zone was successfully investigated by CF Colebrook and
CM White working at Imperial College in London in the 1930s and they
developed a formula to cover this [oWv range. This is not quoted here as it is
quite a complex formula and in practice there is no need to use the formula
because it has now been simpli[ed to design charts. These can be used to
select pipe sizes for a wide range of hydraulic conditions. The use of typical
pipe charts is described later in this chapter in Section 4.8.

The transition zone between smooth and rough pipe [awv should »ot be
confused with the transition zone from laminar to turbulent [ow as is often
done. The [aw is fully turbulent for all smooth and rough pipes and the
transition is from smooth to rough pipe [Qwv.

To summarise the different [Qwvs in pipes:

Laminar flow

\A

Transition from laminar to turbulent flow (this zone is very unstable and should be avoided)
\:

Turbulent flow — smooth pipe flow

\A

Transition from smooth to rough pipe flow

A
Rough pipe flow

4.4.1.1 Physical explanation

Since those early experiments, modern scienti [Clexperiments and equip-
ment have enabled investigators to look more closely at what happens close
to a pipe wall. This has resulted in a physical explanation for smooth and
rough pipe [awv (Figure 4.3b). Investigators have found that even when the
[awv is turbulent there exists a very thin layer of [uid, less than 1 mm thick,
close to the boundary that is laminar. This is called the laminar sub-layer.
At low Reynolds Numbers, the laminar sub-layer is at its thickest and com-
pletely covers the roughness of the pipe. The main [aw is unaffected by the
boundary roughness and is in [ugnced only by viscosity within the laminar
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sub-layer. It seems that the layer covers the roughness like a blanket and
protects the [aw from the pipe wall. This is the smooth pipe flow that
Blazius investigated. As Reynolds Number increases, the laminar sub-layer
becomes thinner and roughness elements start to protrude into the main
[owv. The [awv is now in [uénced both by viscosity and pipe roughness. This
is the transition zone. As Reynolds Number is further increased the lami-
nar sub-layer all but disappears and the roughness of the pipe wall takes
over and dominates the friction. This is rough pipe flow which Nikuradse
investigated.

Commercially manufactured pipes are not arti [Ciblly roughened with
sand like experimental pipes; they are manufactured as smooth as possible
to reduce energy losses. For this reason, they tend to fall within the transi-
tion zone where A varies with both Reynolds Number and pipe roughness.

4.5 HYDRAULIC GRADIENT

One way of showing energy losses in a pipeline is to show them diagram-
matically (Figure 4.4a). The total energy line marked e—e—e shows how
the total energy changes along the pipeline. As energy is lost from friction,
the line is always downwards in the direction of the [oW. It connects the
water surfaces in the two tanks. There is little energy loss at the entrance to
the pipeline but there is a bigger step at the downstream tank to represent
the energy loss as water [ows from the pipeline into the tank. The energy
line is not necessarily parallel to the pipeline. The pipeline usually follows
the natural ground surface pro el

Although total energy is of interest, pressure is more important because
this determines how strong the pipes must be to avoid bursts. So the second
line is the pressure line h—h—h. 1t is always below the energy line but par-
allel to it, to represent the pressure (pressure energy). This shows the pres-
sure change along the pipeline. Imagine standpipes are attached to the pipe.
Water would rise up to this line to represent the pressure head (Figure 4.4a).
The difference between the two lines is the kinetic energy. Notice how both
the energy line and the hydraulic gradient are straight lines. This shows
that the rate of energy loss and the pressure loss are uniform (at the same
rate). The slope of the pressure line is called the hydraulic gradient and is
calculated as follows

hydraulic gradient = %

where his change in pressure (m); and [/ is the pipe length over which the
pressure change takes place (m). The hydraulic gradient has no dimensions
as it comes from dividing a length in metres by a head difference in metres.
It is expressed in terms of metres head per metre length of pipeline. As an
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Figure 4.4 Hydraulic gradient. (a) Flow between two reservoirs. (b) Hydraulic gradient
changes with flow. (c) Hydraulic gradient can rise and fall.

example, a hydraulic gradient of 0.02 means that for every 1 m of pipe-
line, there will be a pressure loss of 0.02 m. This may also be written as
0.02 m/m or as 2 m/100 m of pipeline. The latter reduces the number of
decimal places and means that for every 100 m of pipeline, 2 m of head
is lost through friction. So if a pipeline is 500 m long (there are 5-100 m
lengths), the pressure loss over 500 m will be 5 x 2 =10 m head.

The hydraulic gradient is not a [x&d line for a pipe; it depends on the
[awv (Figure 4.4b). When there is no [aw, the gradient is horizontal but
when there is full [aw the gradient is at its steepest. Adjusting the outlet
valve will produce a range of gradients between these two extremes.
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The energy gradient can only slope downwards in the direction of [ow
to show how energy is lost, but the hydraulic gradient can slope upwards
as well as downwards. An example of this is a pipe junction, when water
[owvs from a smaller pipe into a larger one (Figure 4.4c). As water enters
the larger pipe, the velocity and kinetic energy reduces and the pressure
energy increases.

Two more [nér points about the energy and hydraulic gradients are
shown in Figure 4.4a. At the [rst reservoir, the energy gradient starts at
the water surface but the hydraulic gradient starts just below it. This is
because the kinetic energy increases as water enters the pipe and hence
there is a corresponding drop in the pressure energy. As the [QWwv enters
the second reservoir, the energy line is just above the water surface. This
is because there is a small loss in energy as the [QWv expands from the pipe
into the reservoir. The hydraulic gradient is located just below the water
level because there is still kinetic energy in the [aw. When it enters the
reservoir, it changes back to pressure energy. The downstream water level
represents the [nal energy condition in the system. These changes close
to the reservoirs are really very small in comparison to the friction losses
along the pipe and so they play little or no part in the design of the pipeline.

Normally, pipelines are located well below the hydraulic gradient. This
means that the pressure in the pipe is always positive — see the standpipe in
Figure 4.4a. Even though the pipe may rise and fall as it follows the natural
ground pro el water will [owv as long as it is always below the hydraulic
gradient and provided the outlet is below the inlet. There are limits to how
far below the hydraulic gradient a pipeline can be located. The further
below, the higher will be the pressure in the pipe and the risk of a burst if
the pressure exceeds the limits set by the pipe manufacturer.

4.6 ENERGY LOSS AT PIPE FITTINGS

Although there is an energy loss at the pipe connection with the reservoir
in Figure 4.4a, this is usually very small in comparison with the loss in the
main pipeline and hence it is often ignored. Similar losses occur at pipe
bends, reducers, pipe junctions and valves; and although each one is small,
together they can add up. They can all be calculated individually but nor-
mal design practice is to simply increase the energy loss in the main pipeline
by 10% to allow for all these minor losses.

4.7 SIPHONS

Siphon is the name given to sections of pipe that rise above the hydrau-
lic gradient. Normally, pipes are located well below the hydraulic gradi-
ent and this ensures that the pressure is always positive and so well above
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Figure 4.5 Siphons. (a) Typical siphon with pipe above hydraulic gradient. (b) Device for
finding leaks. (c) Siphon limit.

atmospheric pressure. Under these conditions, water [aws freely under
gravity provided the outlet is lower than the inlet (Figure 4.4a). But when
part of a pipeline is located above the hydraulic gradient, even though the
outlet is located below the inlet, water will not [oW without some help
(Figure 4.5a). This is because the pressure in the section of the pipe above
the hydraulic gradient is negative.

4.7.1 How they work

Before water will [Qwv, all the air must be taken out of the pipe to create a
vacuum. When this happens, the atmospheric pressure on the open water
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surface pushes water into the pipe to [Ithe vacuum and once it is full of
water it will begin to [aWw. Under these conditions the pipe is working as
a siphon. Taking the air out of a pipeline is known as priming. Sometimes
a pump is needed to extract the air but if the pipeline can be temporarily
brought below the hydraulic gradient, the resulting positive pressure will
push the air out and it will prime itself. This can be done by closing the
main valve at the end of the pipeline so that the hydraulic gradient rises to a
horizontal line at the same level as the reservoir surface. An air valve on top
of the siphon then releases the air. Once the pipe is full of water, the main
valve can then be opened and the pipeline will [aWv normally.

4.7.2 Air valves

Even pipelines that normally operate under positive pressures have air
valves. These release air which can accumulate at high spots. It is good
practice to include air valves at such locations. They can be automatic
valves or just simple gate valves that are opened manually occasionally to
release air.

It can sometimes be dif [cult to spot an air valve that is above the hydrau-
lic gradient and this can lead to problems. An engineer visiting a remote
farm saw what he thought was a simple gated air valve on a high spot on a
pipeline supplying the farm with water. Air does tend to accumulate over
time and can restrict the [aWw. So, he thought he would do the farmer a
favour and open the valve to bleed off any trapped air. When the air valve
is opened, there is a hissing sound as the air escapes. However, after some
minutes he realised that the hissing sound was not air escaping from the
pipe but air rushing in. The pipe was in fact above the hydraulic gradient
and was working as a siphon at that point and the valve was only there to
let air out during the priming process. The pressure inside the pipe was
in fact negative and so when he opened the valve, air was sucked and this
de-primed the siphon. Realising his mistake, he quickly closed the valve
and went on down to the farmhouse. The farmer was most upset. What a
coincidence, his water supply had suddenly stopped, and an engineer just
happened to be on hand to [xlit for him!

4.7.3 Some practical siphons

If your car ever runs out of petrol, a siphon can be a useful means of taking
some fuel from a neighbour’s tank. Insert a [exXible small diameter plastic
tube into the tank and suck out all the air (making sure not to get a mouth-
ful of petrol). When the petrol begins to [QWv, catch it in a container and
then transfer it to your car. Make sure that the outlet is lower than the
liquid level in the tank otherwise the siphon will not work.

Another very practical use for siphons is to detect leakage in domestic
water mains (sometimes called rising mains) from the supply outside in the
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street into your home (Figure 4.5b). This can be important for those on a
water meter who pay high prices. A leaky pipe in this situation would be
very costly. The main valve to the house must [rst be closed. Then seal the
cold water tap inside the house by immersing the outlet in a pan of water
and opening the tap. If there is any leakage in the main pipe then the water
will be siphoned back out of the pan into the main. The rate of [aWwv will
indicate the extent of the leakage.

4.7.4 Siphon limits

Siphons can be very useful in situations where the land topography is undu-
lating between a reservoir and the water users. It is always preferable to
locate a pipe below the hydraulic gradient by putting it in a deep trench
but this may not always be practicable. In situations where siphoning is
unavoidable, the pipeline must not be more than 7 m above the hydraulic
grade line. Remember atmospheric pressure drives a siphon and the abso-
lute limit is 10 m head of water. So, 7 m is a safe practical limit. When
pipelines are located in mountainous regions, the limit needs to be lower
than this due to the reduced atmospheric pressure.

The pressure inside a working siphon is less than atmospheric pressure
and hence it is negative when referred to as a gauge pressure (measured
above or below atmospheric pressure as the datum), for example, — 7 m
head. Sometimes siphon pressures are quoted as absolute pressures (mea-
sured above vacuum pressure as the datum). So, —7 m gauge pressure is the
same as +3 m absolute pressure. This is calculated as follows

gauge pressure = =7 m head
absolute pressure = atmospheric pressure + gauge pressure
= 10 - 7 = 3 m head absolute.

4.8 SELECTING PIPE SIZES IN PRACTICE

The development of A as a pipe roughness coef [Ciknt is an interesting story
and this nicely leads into the use of the Darcy-Weisbach formula for link-
ing energy loss with the various pipe parameters. There are several exam-
ples using this formula in the boxes and they demonstrate well the effects
of pipe length, diameter and velocity on energy loss. So, they are a useful
learning tool.

Engineers in different industries and in different countries use other for-
mulae as well as Darcy-Weisbach. Some are developed empirically to [i]
their particular circumstances. But a new generation of engineers are now
replacing these with the Colebrook-White formula which is more funda-
mentally based and covers most commercially available pipes.



122 Practical Hydraulics and Water Resources Engineering

For completeness here is the Colebrook White formula for calculating A

where k is the height of roughness elements in the pipe, d is the pipe diam-
eter, and R, is Reynolds number. Note that the value A is on both sides of
this equation and so an iterative solution is needed. Once A is known then
we use the Darcy-Weisbach formula to calculate discharge. Using the
formula, is rather complicated, though modern spreadsheet design meth-
ods are making it simpler to use. An alternative is to use a design chart
(Figure 4.8). These are easier to use and a range of pipe solutions can be
assessed relatively quickly. Boxes 4.2 and 4.3 provide examples using the
Darcy-Weisbach formula and design charts based on Colebrook-White
formula.

BOX 4.2 EXAMPLE: CALCULATING PIPE DIAMETER
USING DARCY-WEISBACH FORMULA

A 2.5 km long pipeline connects a reservoir to a smaller storage tank outside
a town which then supplies water to individual houses. Determine the pipe
diameter when the steady discharge required between the reservoir and the
tank is 0.35 m3/s and the difference in their water levels is 30 m. Assume the
value of A is 0.03 (Figure 4.6).

This problem can be solved using the energy equation. The first step is to
write down the equation for two points in the system. Point | is at the water
surface of the main reservoir and point 2 is at the surface of the tank. Friction
losses are important in this example and so these must also be included

H,VO’r
AUl
Ulje grad,ent 30m

1=25km
Q=0.35m3s
A=0.03

Figure 4.6 Calculating the pipe diameter.
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This equation can be greatly simplified. p, and p, are both at atmospheric
pressure and are zero. The water velocities v, and v, in the two tanks are
small and hence the kinetic energy terms are also small and can be ignored.
This leaves just the potential energy terms z, and z, and the energy loss term
h; so the equation simplifies to

hf = Z — Z;.
Using the Darcy—Weisbach formula for h,

hy = .
! 2gd

Rearranging this equation

W%
—— =z - z,.
2gd

Diameter d is unknown but so is the velocity in the pipe. So, first calculate
velocity v using the continuity equation

Q = va.

Rearranging equation for v

-

v= =,
a
Calculate area a

nd*
4 ’

and use this value to calculate v

_4Q _ 4x035 _ 0446
nd® " 314xd 4

We need v? for the next step
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Note that d is not known and so it is not yet possible to calculate a value
for v. This can remain as an algebraic expression.
Put all the known information into the Darcy—Weisbach equation

Alv?

2d

Z — I

0.03 x 2,500 x 0.198 _
= =30
2x98Ixdxd

Rearrange this to calculate d

_0.03 x 2,500 x 0.198
2 x981x 30

Calculate the fifth root of 0.0253 to find d
d = 048 m = 480 mm.

d° = 0.0253.

The nearest pipe size to this would be 500 mm. So, this is the size of pipe
needed to carry this flow between the reservoir and the tank.

This may seem rather involved mathematically but another approach, and
perhaps a simpler one, is to guess the size of pipe and then put this into the
equation and see if it gives the right value of discharge. This ‘trial and error’
approach is the way most engineers approach the problem. The outcome will
show if the chosen size is too small or too large. A second or third guess will
usually produce the right answer. If you are designing pipes on a regular basis
you soon learn to ‘guess’ the right size for a particular installation. The design
then becomes one of checking that your guess was the right one.

Try this design example again using the design chart in Figure 4.8 to see if
you get the same answer.

BOX 4.3 EXAMPLE: CALCULATING
DISCHARGE FROM A PIPELINE

A 200 mm diameter pipeline, 2,000 m long is connected to a reservoir and its
outlet is I5 m below the reservoir water level and discharges freely into the
atmosphere. Calculate the discharge from the pipe when the friction factor
A is 0.014 (Figure 4.7).

To solve this problem, use the energy equation between point | at the
surface of the reservoir and point 2 just inside the water jet emerging from
the pipe outlet
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Figure 4.7 Calculating discharge from pipeline.
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This equation can be greatly simplified because p, is at atmospheric pres-
sure and is zero. Also, p, is very near atmospheric pressure because the
position of 2 is in the jet as it emerges from the pipe into the atmosphere.
If it was above atmospheric pressure, the jet would flow laterally under the
pressure. It does not do this and so the pressure can be assumed to be close
to the atmospheric pressure. Therefore, p, is zero. The water velocity v, is

zero in the reservoir and v, at the outlet is very small in comparison with the

potential energy of 15 m, and hence this can also be assumed to be zero. This
leaves just the potential energy terms z, and z, and the energy loss term h,so

the equation simplifies to
Z —Z; = hf‘.
So

w
2gd

Put in the known values and calculate velocity v

zZ -7 =

_ 0.014 x 2,000 x v*

15
2 x981x0.2

2 _ 15%x2x981x0.2 — 9
0.014 x 2,000 ’

v = 145 m/s.
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Use the continuity equation to calculate the discharge

Q =va.
Calculate area a
2 2
- M _M02 b o3ime,
4 4

Now calculate the discharge

Q =145 x 0.031 = 0.045m’/s or 45L/s

4.8.1 Using hydraulic design charts

Pipe charts are now an increasingly common way of designing pipes. An
excellent and widely used source is Hydraulic Design of Channels and Pipes
(Hydraulics Research, 1990). This is a book of design charts based on the
Colebrook-White equation. The equation best describes the transitional [awv
between smooth and rough pipe [aw referred to in Section 4.4.1 and covers
all commercially available pipes. An example of one of these charts is shown
in Figure 4.8. It does not use A values but expresses friction as the height of
the roughness on the inside of a pipe. This chart is for a surface roughness of
k=0.03 mm and is representative of PVC pipes in reasonably good condition.
The chart’s range of [ows is considerable; from less than 0.1 to 20,000 L/s (or
20 m?/s) with pipe diameters from 0.025 to 2.5 m. This should satisfy most
pipe designers. In Box 4.4 is an example showing how to use the design chart.

There are four important practical points to note from the examples.

The [rst point refers to the [rst worked example which showed how
mathematically cumbersome it can be to determine the diameter by cal-
culation. The easier way is to do what most engineers do; they guess the
diameter and then check by calculation that their chosen pipe is the right
one. This might seem a strange way of approaching a problem but it is quite
common in engineering. An experienced engineer usually knows what
answer to expect, the calculation is just a way of con [rthing this. This is
one of the basic unwritten laws of engineering — that you need to know the
answer to the problem before you begin so that you know that you have
the right answer when you get there. Real problems are not like those in the
textbook which come with answers. Knowing you have the right answer
comes largely from experience of similar design problems. New designers
are unlikely to have this experience but they have to start somewhere and
one way is to rely initially on the experience of others and to learn from
them. This is the apprenticeship that all engineers go through to gain expe-
rience and become competent designers.
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Figure 4.8 Typical pipe design chart for Colebrook White equation for k= 0.03.

The second point to note is that there is no unique pipe diameter that
must be used in any given situation. If, for example, calculations show
that a 100 mm pipe is suf[cient then any pipe larger than this will also
carry the [aw. The question of which one to choose may be determined by
other design criteria. One common guideline is to limit velocity to 1.6 m/s
to avoid excessive head losses and limit water hammer problems. Another
might be a limit on the head loss from friction. A third could be a limit on
the pipe sizes available. There are only certain standard sizes which are
manufactured and not all these may be readily available in some countries.
A [nal deciding factor is cost — which pipe is the cheapest to buy and to
operate?

The third point to consider is the value for pipe roughness. It is easy to
choose the value for a new pipe but how long will it be before the rough-
ness increases? What will the value be in say 10 years from now when the
pipe is still being used? The roughness will undoubtedly increase through
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BOX 4.4 EXAMPLE: CALCULATING DISCHARGE
FROM A PIPELINE USING A DESIGN CHART

Using the same example as for the Darcy—Weisbach equation. A 200 mm
diameter pipeline 2,000 m long is connected to a reservoir and the outlet is
I5 m below the reservoir water level. Calculate the discharge from the pipe
when the pipe roughness value k is 0.03 mm.

The design chart uses the hydraulic gradient to show the rate of head loss
in a pipeline. So, the first step is to calculate the hydraulic gradient from the
information given above.

The pipe is 2,000 m long and the head loss from the reservoir to the pipe
outletis 15 m, so

hydraulic gradient = ?

15

= 0.0075 = 0.75m/100 m.
2,000

Using the chart, locate the intersection of the lines for a hydraulic gradient
of 0.75 m/I00 m and a diameter of 200 mm. This locates the discharge line
and the value of the discharge

Q = 0.045 m*/s or 45 L/s.

Note that the chart can also be used in reverse to determine the diameter
of a pipe and head loss for a given discharge.

general wear and tear. If lime scale deposits or algae slime build up on the
inside of the pipe or the pipe is misused and damaged, the roughness will
be signi [cantly greater. So when choosing the most appropriate value for
design, it is important to think ahead and what the roughness might be
later in the life of the pipe. This is where engineering becomes an art and all
the engineer’s experience is brought to bear in selecting the right roughness
value for design purposes. If you select a low roughness value, the pipe may
not give good, long service. If you choose a high value, this will result in
unnecessary expense of having pipes which are too big for the job in hand.

The [mal point, and often the most important to consider is cost. Small
diameter pipes are usually cheaper than larger diameter pipes, but they
require more energy to deliver the discharge because of the greater friction.
This is particularly important when water is pumped and energy costs are
high. The trade-off between the two must take account of both capital and
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operating costs if a realistic comparison is to be made between alternatives.
This aspect of pipeline design is covered in more detail in Chapter 7 Pumps.

4.8.2 Sizing pipes for future demand

Pipes sizes are often selected using a discharge based on present water
demands and little thought is given to how this might change in the future.
Also, there is always a temptation to select small pipes to satisfy current
demand simply because they are cheaper than larger ones. These two fac-
tors can lead to trouble in the future. If demand increases and higher dis-
charges are required from the same pipe, the energy losses can rise sharply
and so a lot more energy is needed to run the system.

As an example, a 200 mm diameter pumped pipeline, 500 m long,
supplies a small town with a discharge of 50 L/s. Several years later the
demand doubles to 100 L/s. This increases the velocity in the pipe from
1.67 to 3.34 m/s (i.e. it doubles) which pushes up the energy loss from 5
to 20 m (i.e. a fourfold increase). This increase in head loss plus the extra
[owv means that eight times more energy is needed to operate the system
and extra pumps will be required. A little extra thought at the planning
stage and a little more investment at the beginning could save a lot of extra
pumping cost later.

Increasing the energy available is one way of increasing the discharge in a
pipeline to meet future demand. But another way is to increase the effective
diameter of the pipe. A practical way of doing this is to lay a second pipe
parallel to the [rst one. It may not be necessary to lay the second pipe along
the entire length. Pipes are expensive, and so from a cost point of view only
the minimum length of parallel pipe should be laid to meet the demand
(Figure 4.9). The discharge in pipe 1 will equal the discharge in pipe 2.
This is the original pipeline carrying the (inadequate) discharge between
the tanks — note the energy line which represents the uniform energy loss
along the pipeline. Pipe 3 is the new pipe laid parallel to the original pipe
and so the combined effect of pipes 2 and 3 is to increase the cross-sectional

e New energy line

\e;‘/\- Original energy line

Figure 4.9 Parallel pipes can increase discharge with the same energy.
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area carrying the discharge and decrease the energy loss along the parallel
section of the pipeline (the velocity is lower because of the increased area).
The effect of reducing the energy loss in the parallel section is to make more
energy available to move water through pipeline 1 and so the overall dis-
charge is increased. Note how the energy line for pipe 1 in the new system
is steeper showing that it is carrying a higher discharge. The energy line
for the parallel pipes has a gentler gradient due to the overall reduction in
velocity in this section. The length of parallel pipe depends on the required
increase in discharge. Should the discharge demand increase further in the
future, the length of parallel pipeline can be extended to suit. The job for
the designer is to decide on the diameter and length of pipe 3 (see Box 4.5).

BOX 4.5 EXAMPLE: CALCULATING
LENGTH OF A PARALLEL PIPE

A 1,000 m long pipeline, 150 mm diameter supplies water from a reservoir to
an offtake point. Calculate the discharge at the offtake when the head available
is 10 m. Since the pipeline was installed, the water demand has doubled and
so a parallel 250 mm diameter pipeline is to be installed alongside the original
pipeline (Figure 4.9). Calculate the length of new pipe required to double the
discharge. Assume the friction factor for the pipelines is k = 0.03 mm. Use the
pipe design chart in Figure 4.8.

First calculate the original discharge. Calculate the hydraulic gradient and
together with the pipe diameter determine the discharge from the pipe
design chart. The data and the results are tabulated as follow(L/s)

Friction k.~ Hyd grad  Discharge
Pipe Pipe dia (mm)  Length (m) (mm) (m/100 m) (Lis)

Original pipe 150 1,000 0.03 1.0 23

The demand has now doubled to 46 L/s. So, the additional 23 L/s is sup-
plied by introducing a pipe of 250 mm diameter — pipe 3 — alongside the origi-
nal pipeline but as yet of unknown length. This length cannot be calculated
directly and requires some iteration. In other words, some intelligent guess
work. It is convenient at this stage to divide the original pipeline into two
parts — pipe 2 which has the same length as pipe 3, and pipe | which is from
the reservoir to the point where the two parallel pipes join.

First determine the hydraulic gradient in the two parallel pipes — pipes 2
and 3 — so that the two pipelines carry a combined discharge of 46 L/s. The
gradient will be the same for each pipeline as they have the same pressure
at the points of connection and discharge. Mark on the pipe chart vertical
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lines representing the two pipe diameters. Look for a hydraulic gradient that
intersects the pipe ‘lines’ so that the sum of the two discharges is 46 L/s. This
occurs at a hydraulic gradient of 0.18 which results in discharges of 10 and
35 L/s totalling 45 L/s. This is close enough to 46 L/s.

Next, determine the hydraulic gradient for pipe | for a discharge of 46 L/s.
From the chart this is 3.2.

Using this information, it is now possible to set up an equation to calculate
the length of pipe 3. The sum of the head loss in pipes | and 3 (remember the
loss in pipe 3 will be the same as pipe 2) is 10 m. So

h| - h3 =10m.
Now calculate h, and h,

100 hy

= hydraulic gradient = 3.2,
and so

b = L x 3.2.
100

Similarly

L %018

h
’ 100

So

L x32 , L3x018 _
100 100

Both L, and L; are unknown. So to ‘eliminate’ one of the unknowns, substi-

10.

tute for L, in terms of L;
L| = |,000 - L3.

Substitute for L, in the above equation

(L000 ~ L3) x3.2  L; x 0.18
100 100
(1,000 - [3)3.2 + 0.18 Ly = 1,000

3,200 - 3.2L; + 0.18L; = 1,000
2,200

=10

3.02L; =2200 L;= =728m.
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So the length of pipe 3 is 728 m. This is also the length of pipe 2. Pipe | will
be 274 m. The table summarises the results:

Frictionk  Hyd grad  Discharge
Pipe Pipe dia (mm) (mm) (m/100 m) (Lls) Length (m)

Pipe | 150 0.03 3.20 46 274
Pipe 2 150 0.03 0.18 10 728
Pipe 3 250 0.03 0.18 35 728

This is one example where using a formula makes the problem easier to
solve as it avoids the iterative approach. Try to solve the problem using the
Darcy—Weisbach formula and the continuity equation with a A value of 0.04
for the pipes.

4.9 PIPE NETWORKS

Most water supply systems are not just single pipes but comprise a net-
work of pipes. These supply water to several dwellings in a village or town
(Figure 4.10). Some networks are simple and involve just a few pipes but
some are quite complicated involving many different pipes and connec-
tions. Sometimes, the pipes form a ring or loop and this ensures that if
one section of pipe fails for some reason then [aWv can be maintained from
another direction. It also has hydraulic advantages. Each offtake point is
supplied from two directions and hence the pipe sizes in the ring can be
smaller if the point was fed from a single pipe.

The simplest example of a ring or loop network is a triangular pipe lay-
out (Figure 4.11). Water [aws into the loop at point A and [aWs out at
points B and C. So the water [aivs away from point A towards B and C. But

Figure 4.10 Pipe networks.
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there will also be a [aWv in pipe BC and this could be in the direction BC or
CB depending on the pressure difference between B and C. If the pressure
at B is higher than C then there will be a [aWv from B to C. Conversely, if
the pressure at C is higher than the pressure at B then the [aw will be from
Cto B.

There are three rules to solving the problem of pressures and discharges
in a network:

1. The sum of all the discharges at a junction is zero

2. The [AW in one leg of a network will be in the direction of the pres-
sure drop

3. The sum of the head losses in a closed loop will be zero for a start and
[nish at any junction in the loop.

These rules apply to all networks and not just the simple ones. However,
the calculations can get rather involved. An example of how the rules are
applied to a simple network is shown in Box 4.6.

BOX 4.6 EXAMPLE: CALCULATING DISCHARGES
AND PRESSURES IN A PIPE NETWORK

A simple network of three pipes forms a triangle ABC. The following data are
available (Figure 4.11):

Pipe Diameter (mm) Length (m) Friction factor k (mm)
AB 300 2,000 0.03
BC 150 1,200 0.03
CA 450 2,050 0.03

The discharge entering the system at point A is 100 L/s and this meets the
demand at B of 50 L/s and at C of 50 L/s.

L =2000 m

d = 300 mm 50 L/s
100 L/s — > @ -

L =2050 m
d =450 mm

Figure 4.11 Triangular pipe network.
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Calculate the discharges in each pipe and the pressures at B and C if A is
supplied at a pressure of 100 m head of water. Use the pipe design chart in
Figure 4.8.

Start by looking at the data, apply some common sense and rule (l) to get
an assessment of the likely discharges in each pipe. AB and AC are approxi-
mately the same in length and AC has a large diameter. So assume Q,c is
60 L/s, Qg is 40 L/s and Qg is 10 L/s. Note the assumed flow directions
indicated by the arrows.

Next, calculate the head loss in each pipe using the pipe chart in Figure 4.8.
Notice how the discharges in pipes Bc and CA are listed as negative. The sign
comes from considering the discharges positive in a clockwise direction
around the loop.

Diameter Discharge Hydraulic gradient

Pipe (mm) (Lls) (m per 100 m) Length (m)  Head loss (m)
AB 300 40 0.14 2,000 +2.80
BC 150 -10 0.2 1,200 —2.40
CA 450 —60 0.025 2,050 —-0.51

Applying rule (3) from the start point A and moving in a clockwise direction
add up all the head losses in the pipes, that is, 2.80 —2.40 — 0.5] =—0.11 m.
This sum should come to zero.

To make the above sum come to zero, slightly decrease the discharge in
pipe AB, recalculate the head losses again and see if the sum of the head
losses comes to zero. In this case, the value is close to zero so this suggests
that the discharge values chosen are close to the right ones. So, there is no
need for further iteration.

4.10 MEASURING DISCHARGE IN PIPES

Discharges in pipelines can be measured using a venturi meter or an orifice
plate (Figure 4.12). Both devices rely on changing the components of the
total energy of [owv from which discharge can be calculated (see Section
3.7). The venturi meter was developed by an American, Clemens Herschel
(1842-1930) who was looking for a way to measure water abstraction from
a river by industrialists. Although the principles of this measuring device
were well established by Bernoulli, it was Herschel who, being troubled by
unlicensed and unmeasured abstractions by paper mills, developed it into
the device we use today.

A venturi meter comprises a short, narrow section of pipe (throat) fol-
lowed by a gradually expanding tube. This causes the [aWv velocity to
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Figure 4.12 Measuring discharge in pipelines. (a) Venturi meter. (b) Orifice meter.

increase (remember continuity) and hence the kinetic energy also increases.
As the total energy remains the same throughout the system, it follows that
there must be a corresponding reduction in pressure energy. By measuring
this change in pressure using a pressure gauge or a manometer and using
the continuity and energy equations, the following formula for discharge in
the pipe can be obtained

_ 2gH
Q - Cdal mz -1
—

az

where a, is the area of main pipe (m?), a, is the area of venturi throat (m?),
H is the head difference between pipe and throat (m), g is the gravity con-
stant (9.81 m/s?) and C, is the coef [ciknt of discharge.

This is the theory but in practice there are some minor energy losses in
a venturi and so a coef [cient discharge C; is introduced to obtain the true
discharge. Care is needed when using this formula. Some textbooks quote
the formula in terms of a, rather than a; and this changes several of the
terms. It is the same formula from the same fundamental base but it can be
confusing. The safest way is to avoid the formula and work directly from the
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energy and continuity equations. A derivation of the formula and an example
of calculating discharge working from energy and continuity are shown in
Boxes 4.7 and 4.8.

BOX 4.7 DERIVATION: FORMULA FOR
DISCHARGE IN A VENTURI METER

First, write down the energy equation for the venturi meter. Point | is in the
main pipe and point 2 is located in the throat of the venturi (Figure 4.13). It is
assumed that there is no energy loss between the two points. This is a reason-
able assumption as contracting flows suppress turbulence which is the main

cause of energy loss.
P, P,V
P 2g pg 2g
As the venturi is horizontal
Z = 7y,
and so
LI/ RS
Pg 2 pg 2
Now, rearrange this equation so that all the pressure terms and all the

velocity terms are brought together

2 2
Po_P_va_ W

Pg Pg 28 2
The left-hand side of this equation is the pressure difference between
points | and 2 which can be measured using pressure gauges or a differential

| Qs

Datum

Figure 4.13 Venturi meter for measuring discharge.




Pipes 137

manometer. This is 2 manometer with one limb connected to the pipe and

the other limb connected to the throat (see Section 2.9).
At this point it is not possible to calculate the velocities because both
v, and v, are unknown. A second equation is needed to do this — the continu-

ity equation.
Write the continuity equation for points | and 2 in the venturi
av, = aVv,.

Rearrange this

a

Vo, = —V.
@

Now a, and a, are the cross-sectional areas of the pipe and venturi, respec-
tively, and can be calculated from the pipe and venturi throat diameters,
respectively. Substituting for v, in the energy equation

po_p _HEEW W
pg pg HIBg 2
b PZ_VIZGIZ_G%D

g pg 22H & H

Put

H=P _ P

- ’

pPg Pg
where H is the difference in head between the pipe (point I) and the venturi

throat (point 2)
Rearrange the equation for v,

; 0O 4, O
vi = {J28H G——01
Va2 - a2 O

Use the continuity equation to calculate discharge
Q = aw,

and so

O ga, O
Q= \2¢H OO

2
a, _02|:|
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Put
a
m=—,
ap
and so
2¢gH
Q = q 2g .
m- =1

Introduce a coefficient of discharge C,

2gH
Q :Cda| Zg .
m* -1

In the case of the venturi meter C,=0.97, which means that the energy
losses are small and the energy theory works very well (C,=1.0 would
mean the theory was perfect). For ori[cd plates, the same theory and for-
mula can be used but the value of C, is quite different at C,=0.6. The
theory is not so good for this case because there is a lot of energy loss
(Figure 4.12b). The water is not channelled smoothly from one section to
another as in the venturi but is forced to make abrupt changes as it passes
through the ori [cd and expands downstream. Such abruptness causes a lot
of turbulence which results in energy loss. (The C, value is similar to that
for ori [cd [ow from a tank — see Section 3.6).

BOX 4.8 EXAMPLE: CALCULATING
DISCHARGE USING A VENTURI METER

A 120 mm diameter venturi meter is installed in a 250 mm diameter pipeline
to measure discharge. Calculate the discharge when the pressure difference
between the pipe and the venturi throat is 2.5 m of head of water and C, is
0.97.

Although, there is a formula for discharge, it can be helpful to work from
first principles. Not only does this reinforce the principle but it also avoids
possible errors in using a rather involved formula which can easily be mis-
quoted. So, this example is worked from the energy and continuity equations.

First step is to write down the energy equation

2 2
v v
LR /N R -

pg  2g pg  2g
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As the venturi is horizontal
zZ) = 7y,

and so
ﬂ+£:&+ﬁ
Pg 2g pg 2g

Now rearrange this equation so that all the pressure terms and all the
velocity terms are brought together

2 )
PP _va_ Vi

pg pg 28 28

But
PP 25m.
Pg Pg

Remember that the pressure terms are in m head of water and it is the
difference that is important and not the individual pressures.

and so
ﬁ—iZZSm
2g  2g T

It is not possible to solve this equation directly as both v, and v, are
unknown. So, use continuity to obtain another equation for v, and v,

av, = aVv,.
Rearrange this

_a

Vo = — V.
@

Next step is to calculate the areas g, and a,
Area of pipe

_ md? _ m0.25°
q=—-=

4

= 0.05m>.
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Area of venturi

2 2
0 = Td, _ 10.12 — 0.0 1m?
4 4
vy = &w = 455y,
0011

Substitute this value for v, in the energy equation

455 v
2g 2g
20.7 v — v} = 25 x 2 x 9.8] = 49.05

v, = ﬂ = 157 m/s.
\ 19.7

Calculate Q

=25m

Q = Cyviq,
= 0.97 x .57 x 0.05 = 0.076 m’/s.

4.11 MOMENTUM IN PIPES

The momentum equation is used in pipe [oWw to calculate forces on pipe
[ffings such as nozzles, pipe bends and valves. In more advanced applica-
tions it is used in the design of pumps and turbines where water [OW creates
forces on pump and turbine impellers.

To solve force and momentum problems, a concept known as the control
volume is used. This is a way of isolating part of a system being investigated
so that the momentum equation can be applied to it. To see how this works,
an example is given in Box 4.9 showing how the force on a pipe reducer (or
nozzle) can be calculated.

BOX 4.9 EXAMPLE: CALCULATING
THE FORCE ON A NOZZLE

A 100 mm diameter fire hose discharges I5L/s from a 50 mm diameter
nozzle. Calculate the force on the nozzle (Figure 4.14).

To solve this problem, all three hydraulic equations are needed; energy,
continuity and momentum. The energy and continuity equations are needed
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(@) 100 mm

pipe 50 mm nozzle

Flow —=

I
Fi=pa, == : \ | <— Fy=pja,
I §
Control volume
Figure 4.14 Calculating the force on a nozzle. (a) Nozzle details. (b) Control volume.

to calculate the pressure in the |00 mm pipe and momentum is then used to
calculate the force on the nozzle.

The first step is to calculate the pressure p, in the 100 mm pipe. Use the
energy equation

LR N
pg  2g pg  2g

The pressure in the jet as it emerges from the nozzle into the atmosphere
is p,. The jet is at the same pressure as the atmosphere and so the pressure
p, is zero. The potential energies z, and z, are equal to each other because
the nozzle and the pipe are horizontal and so they cancel out.

So, the energy equation becomes

2 2
po_va v

pg 28 2g

The value of p, is unknown and so are v, and v,. So, the next step is to
calculate the velocities from the discharge equation

Q
a
v = Qandvz = g
a ay
Area of pipe
nd? _ mo.P

q = —— = —— = 0.0078 m>.
4 4
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Area of jet
2 2
a = M9 2 T005T 6019 m,
4 4

Next calculate the velocities

v = Q = 0015 =192 m/s.
a  0.0078
And
v, = Q = 0.015 =79 mls.
q 0.0019

Put all the known values into the energy equation

po_ 79 192
pg 2x981 2x98lI

p = 2.99 x 1,000 x 9.81 = 29,333 N/m”.

=299m

The final step is to calculate the force F on the nozzle using the momen-
tum equation. To do this, the concept of the control volume isolates that part
of the system being investigated. All the forces which help to maintain the
control volume are then identified. F, and F, are forces due to the water
pressure in the pipe and the jet, and F is the force on the water on the
reducer. Although the force F, is shown acting against the flow, remember
that there is an equal and opposite force acting in the direction of the flow
(Newton’s third law).

Use the momentum equation

F-FK —-F=pQ(v; 