
Magdalene Marinaki and Markos Papageorgiou

Optimal Real-time Control
of Sewer Networks

With 65 Figures



Magdalene Marinaki, PhD
Markos Papageorgiou, PhD

Department of Production Engineering and Management,
Dynamic Systems and Simulation Laboratory,
Technical University of Crete, Chania, Greece

British Library Cataloguing in Publication Data
Marinaki, Magdalene, 1970–
Optimal real-time control of sewer networks. — (Advances in
industrial control)
1. Combined sewers — Automatic control 2. Combined sewers —
Automatic control — Mathematical models — Case studies
3. Real-time control 4. Combined sewer overflows —
Mathematical models — Case studies 5. Non-linear control
theory
I. Title II. Papageorgiou, M. (Markos), 1953–
628.2′14

ISBN 1852338946

Library of Congress Cataloging-in-Publication Data
Marinaki, Magdalene, 1970–
Optimal real-time control of sewer networks / Magdalene Marinaki, Markos Papageorgiou.
p. cm. — (Advances in industrial control)

Includes bibliographical references and index.
ISBN 1-85233-894-6 (alk. paper)
1. Combined sewers—Automatic control. 2. Real-time control. I. Papageorgiou, M.

(Markos), 1953– II. Title. III. Series.

TD662.M37 2004
628′.214—dc22 2004056451

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

Advances in Industrial Control series ISSN 1430-9491
ISBN 1-85233-894-6 Springer London Berlin Heidelberg
Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005

MATLAB® and Simulink® are the registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098, U.S.A. http://www.mathworks.com

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the informa-
tion contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Typesetting: Electronic text files prepared by author
Printed in the United States of America
69/3830-543210 Printed on acid-free paper SPIN 10952702



Advances in Industrial Control

Series Editors

Professor Michael J. Grimble, Professor Emeritus of Industrial Systems and Director
Professor Michael A. Johnson, Professor of Control Systems and Deputy Director

Industrial Control Centre
Department of Electronic and Electrical Engineering
University of Strathclyde
Graham Hills Building
50 George Street
Glasgow G1 1QE
United Kingdom

Series Advisory Board

Professor E.F. Camacho
Escuela Superior de Ingenieros
Universidad de Sevilla
Camino de los Descobrimientos s/n
41092 Sevilla
Spain

Professor S. Engell
Lehrstuhl für Anlagensteuerungstechnik
Fachbereich Chemietechnik
Universität Dortmund
44221 Dortmund
Germany

Professor G. Goodwin
Department of Electrical and Computer Engineering
The University of Newcastle
Callaghan
NSW 2308
Australia

Professor T.J. Harris
Department of Chemical Engineering
Queen’s University
Kingston, Ontario
K7L 3N6
Canada

Professor T.H. Lee
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576



Professor Emeritus O.P. Malik
Department of Electrical and Computer Engineering
University of Calgary
2500, University Drive, NW
Calgary
Alberta
T2N 1N4
Canada

Professor K.-F. Man
Electronic Engineering Department
City University of Hong Kong
Tat Chee Avenue
Kowloon
Hong Kong

Professor G. Olsson
Department of Industrial Electrical Engineering and Automation
Lund Institute of Technology
Box 118
S-221 00 Lund
Sweden

Professor A. Ray
Pennsylvania State University
Department of Mechanical Engineering
0329 Reber Building
University Park
PA 16802
USA

Professor D.E. Seborg
Chemical Engineering
3335 Engineering II
University of California Santa Barbara
Santa Barbara
CA 93106
USA

Doctor I. Yamamoto
Technical Headquarters
Nagasaki Research & Development Center
Mitsubishi Heavy Industries Ltd
5-717-1, Fukahori-Machi
Nagasaki 851-0392
Japan



To my brother, to my father, and to the memory of my 

mother

Magdalene Marinaki 

To Elia 

Markos Papageorgiou 



Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new philos-
ophies . . . , new challenges. Much of this development work resides in industrial
reports, feasibility study papers and the reports of advanced collaborative projects.
The series offers an opportunity for researchers to present an extended exposition
of such new work in all aspects of industrial control for wider and rapid dissemina-
tion.

Water is a valuable resource in all societies and its provision is only the first
part of the water cycle. The second part involves collecting wastewater and then
treating it so that its subsequent discharge to the environment is not harmful in any
way. This collection is accomplished by sewer networks and the treatment is usu-
ally biological, taking place in dedicated wastewater treatment plants. These sys-
tems usually have a fixed maximal capacity and the problem is that the system is
subject to uncontrolled, unpredictable large-scale disturbances in the form of rain-
fall. Sudden surges of influent swelled by storm waters can have a devastating
effect on these systems, since if the surge does not bypass the wastewater treatment
plant then all the biologically active media therein can be flushed into the environ-
ment. It can take weeks to restore these plants to biologically effective levels. The
problem is to find cost-effective ways of dealing with these periodic surges of
inflow. One remedy is the use of storm-water-storage basins but a highly pertinent
question is whether the storage capability and the control of the sewer network
itself can be exploited as an alternative or supplementary remedy. Magdalene Mari-
naki and Markos Papageorgiou (Technical University of Crete) set out to investi-



x Series Editors’ Foreword

gate this question and the result is this excellent monograph that breaks new ground
in this control applications field. Whilst the regulatory framework for wastewater
treatment has rapidly become more stringent, the technology to deliver the new
regulatory demands has emerged more slowly. Control engineering has a signifi-
cant contribution to make to this field as this monograph shows.

The monograph opens by introducing the reader to the models and simulation
tools for sewer networks. In Chapter 3, a clear multi-level control strategy is pro-
posed for sewer network flow control and this is followed by full development of
the proposed approach. The creation of an optimization framework for sewer net-
work control is detailed and solved in Chapters 4 and 5. The monograph is notable
for the presentation of an extended case study based on the Obere Iller (Bavaria,
Germany) sewer network. A key conclusion is that this approach can manage storm
water flows quite successfully and a more inclusive global approach to sewer net-
work and wastewater treatment plant control deserves further investigation.

The monograph will be of interest to all working in the water and wastewater
treatment industry. It is an excellent example of how control engineering can help
to solve some of the problems of this industry. Control engineering readers will
find the application and the solution procedures proposed by Dr Marinaki and
Professor Papageorgiou of considerable interest. The volume is an exemplary entry
in the Advances in Industrial Control monograph series.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.



Preface

During recent decades an increased interest in the protection of the environment 

from everything that could lead to its downgrading and destruction has been 

observed. The overflows from combined sewer networks are clearly one of the 

main pollutant sources in the environment. The development of control systems 

minimising overflows of combined sewer networks aims at the protection of the 

quality of waters that receive the outflows of the networks. 

This monograph gives a detailed description of the development, application, 

and simulation testing of an advanced control system for central sewer network 

flow control. A multilayer control structure that consists of three control layers 

(adaptation, optimization, and direct control) may be used for the control of a 

combined sewer network. With regard to the optimization layer, several 

approaches have been proposed in the past. This monograph is focused on the 

development and comparison of two methods for the optimization layer, namely 

the nonlinear optimal control and the multivariable feedback control methods. 

An important feature of this monograph is that the efficiency of the control 

methods used is investigated for a large-scale combined sewer network located at 

the river Obere Iller in Bavaria (Germany) through simulation with a realistic 

model using different scenarios of external inflows. This study was the basis for 

the implementation of these control strategies in the particular sewer network. 

This book is aimed at control and water engineers; researchers in the fields of 

control, modelling, and simulation of combined sewer networks; scientists who are 

involved in the design, development, and implementation of control systems for 

combined sewer networks; and postgraduate students working in the field of sewer 

network modelling and control. 

Magdalene Marinaki and Markos Papageorgiou 

June 2004 
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Chapter 1 

Introduction

The pollution (the surcharge of materials or energy or microorganisms that are 

pathogenic for humans and animals) of the groundwater and underwater is one of 

the most important problems that preoccupies people and authorities around the 

world. There are many ecological consequences of the pollution of the 

groundwater. For example, the physicochemical characteristics of the water may be 

changed, leading, among others, to serious economical consequences, e.g., an 

increase in the cost of water processing for its reuse. 

The most important problems of pollution concern the water (lakes, rivers, and 

the sea) that suffers the strongest exploitation and use. One of these uses is as 

receivers of the outflows of combined sewer networks (Seidl et al., 1998; Lee and 

Bang, 2000; Chebbo et al., 2001). The construction of treatment plants, to enable 

sewage treatment before disposal, protects the quality of the water that receives the 

outflows of the networks. However, urban combined sewer networks do not have 

separated collectors for the domestic and industrial sewage, on the one hand, and 

the rainwater drainage, on the other hand. Therefore, during rainfall, networks or 

treatment plants may be overloaded, and overflows may take place upstream of 

overloaded stretches, causing pollution of receiving waters. Placing retention 

reservoirs at appropriate locations of the network [by constructing special basins 

(off-line storage) or by installing throttle gates at the end of voluminous sewer 

stretches (in-line storage)] is a cost-efficient way to avoid overflows in moderate 

rain events and to reduce them in stronger rainfall, as the water is stored in the 

reservoirs during the rainfall and is directed toward the treatment plant after the 

end of the rainfall.  

Optimal operation of a combined sewer network (that contains retention 

reservoirs) (Figure 1.1) implies that for each rain event the whole retention 

capacity of all reservoirs will be used before overflows take place somewhere in 

the network. However, this cannot be guaranteed by fixed gate settings, such as 

fixed weirs or manually adjustable gates for the filling and emptying of the storage 

spaces.   Especially  if  the  rainfall  is  distributed  unevenly  over  the  urban  area,  
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Figure 1.1. Schematic representation of a small sewer network.
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there may be reservoirs that are not totally filled, while overflows already occur

elsewhere in the network. In these cases, a further considerable reduction of

overflows can be obtained by real-time operation of the reservoirs, e.g., by use of

controllable gates. The decision on how to move the gates during a certain rain

event may be taken by a human operator or by an automatic control strategy to be 

applied in real time. An efficient control strategy can reduce substantially the

overflows from a sewer network. In addition, it may lead to substantial cost

savings as the number and storage capacities of the reservoirs required to keep

overflows below a certain limit [usually legislatively defined (Zabel et al., 2001)]

depends on the efficiency of the applied control strategy.

A structure for real-time control of sewer networks that combines high

efficiency and low implementation cost can be composed of a number of control

layers (multilayer control structure). Such a flexible hierarchical structure, because

of its modular character, that is reliable due to its decentralized structure and 

efficient due to the real-time operation and the global consideration of the overall

network, provides real-time control of sewer networks. It consists of three control

layers, as has been proposed by Papageorgiou and Mevius (1985): An adaptation
layer is responsible for inflow and possibly rain prediction (if needed) and for real-

time estimation of the system state. An optimization layer is responsible for the

central, overall network control (i.e., for specifying reference trajectories for the

reservoir storages and outflows). A decentralized direct control layer is responsible

for the realization of the reference trajectories. With regard to the optimization

layer, several approaches have been proposed in the past, like nonlinear optimal

control, multivariable feedback control, methods based on dynamic or linear

programming, expert systems, fuzzy control, and further heuristic approaches.

Nonlinear optimal control is potentially the most efficient approach due to 

direct consideration of inflow predictions, of process nonlinearities, and of

constraints. On the other hand, nonlinear optimal control implies development and

implementation of sophisticated codes for real-time numerical solution of the

optimal control problem. Multivariable regulators, if designed properly, may

approximate the efficiency of nonlinear optimal control, based on much simpler

calculation codes. The approaches that are based on dynamic programming are
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difficult to apply to large-scale networks due to the “curse of dimensionality”, 

while the approaches based on linear programming may not include the 

nonlinearities of the process. Expert systems, fuzzy control, and further heuristic 

approaches are less efficient, less systematic, and more cumbersome to develop, to 

maintain, and to expand than theoretically founded approaches. 

All the previously mentioned approaches have some special characteristics that 

call for thorough study and analysis before they can be implemented in the 

optimization layer. The need for developing and applying an effective central 

control method was the motivation for carrying out the research presented in this 

monograph, which describes the development, application, and simulation testing 

of a control system for central sewer network flow control. More precisely the 

following issues are addressed in some detail: 

The development and analysis of two general and systematic methods for 

the central control of sewer networks, namely a nonlinear optimal control 

and a multivariable feedback control method. Several improvements, 

modifications, and extensions are introduced to previously developed 

versions of the methods in order to increase their efficiency. 

Application of both control approaches to a particular combined sewer 

network located at the river Obere Iller in Bavaria (Germany), which 

connects five neighboring cities to one treatment plant. The efficiency of 

the control methods is investigated for this network through simulation 

with a realistic model using different scenarios of external inflows, and a 

comparison of their respective results is undertaken. 

The structure of this book is as follows. Chapter 2 presents the mathematical 

modelling of combined sewer networks. Chapter 3 presents the objectives of 

combined sewer network control and provides an extended literature review of the 

methods proposed for the particular control problem in the past as well as the 

approach pursued in this research. Chapters 4 and 5 present the nonlinear optimal 

control and the linear multivariable feedback control, respectively, as a basis for 

central sewer network flow control. Chapter 6 describes the application of the 

developed methodologies to the particular real sewer network of Obere Iller in 

Germany. Chapter 7 presents the results obtained for the specific sewer network by 

use of both approaches, and compares them, as well as the results obtained with the 

no-control case. Finally, Chapter 8 summarizes the main conclusions. 



Chapter 2 

Modelling of Sewer Network Flow

2.1 Introduction 

The first step in the study and control of a process is the development of a 

mathematical model of the process behaviour. The mathematical model includes a 

set of equations that describe, with more or less accuracy, the behaviour of the 

process, and through this model (using appropriate input data) the time evolution 

of internal quantities of the process may be calculated. The mathematical model of 

the process may be derived via: 

The deductive way, by using known laws of physics that describe the 

relevant aspects of the studied process, as for example the continuity 

equation. In the case of a sewer network, the model that is deduced in this 

way is referred to as the hydraulic or hydrodynamic model (Béron and 

Richard, 1982).  

The inductive way, by using experimental results (input output values) that 

indirectly characterize the behaviour of the process.  

A combination of both previously mentioned approaches, that is, the use of 

both physical laws and experimental results. A mathematical structure 

derived from physical laws may be fitted to the data, as it is the case for the 

sewer network flow when hydrological models (Béron and Richard, 1982) 

are developed. 

Frequently, for the same process it is necessary to derive more than one model 

with different degrees of accuracy and complexity. Typically two models are 

developed in control applications. The first is a sufficiently accurate simulation 

model that describes the behaviour of the process with high realism in order to be 

used for testing the performance of the control methods. The second model has 

lower accuracy and complexity and is used for the design of the controller, leading 

to accordingly limited design complexity and moderate computational effort.   
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In this book, two mathematical models are employed for the study of the sewer 

network control problem: a realistic simulation model that is referred to in the 

sequel of the monograph as the accurate model of the sewer network, and a simpler 

control design model that is referred to as the simplified model of the sewer 
network.

Both employed models address only the water flow dynamics in a wastewater 

system, not the water quality aspects and dynamics. This is in accordance with the 

addressed control problem, which concerns water quantities, not water quality 

dynamics (see Chapter 8 for suggested future extensions). It should be noted that 

most commercially available modern software packages for the simulation of 

wastewater systems describe not only the water flow but also the pollutant 

dynamics in the system. The development of real-time control systems, however, 

that explicitly consider water quality measurements and aspects are still in their 

infancy (Ashley et al., 1999). 

2.2 Accurate Model of Sewer Networks 

Combined sewer networks consist of a set of elements in which different processes 

take place, as for example storage (in the reservoirs or in the sewers), 

transportation (in the sewers), and merging of flows (in the nodes). All these 

processes in the different elements of the sewer networks are modelled using 

known laws of hydraulics for the development of the accurate model of the sewer 

network.  

In the following subsections, a few typical elements are described, upon which 

most combined sewer networks may be built.  

2.2.1 Link Elements 

a) Hydrodynamic Link Elements

The hydrodynamic link element (the hydrodynamically modelled sewer), is used 

where a nonnegligible storage of volume is induced in a sewer stretch by spillback 

or by flow regulation via throttle gates. 

The basis for the mathematical modelling of the hydrodynamic link element are 

the Saint-Venant equations (Mays and Tung, 1978), namely the continuity equation 

and the momentum equation, which describe with satisfactory accuracy the 

dynamic behaviour of the flow in the sewers of the network. The Saint-Venant 

equations take into account the friction and the inertia of the flowing liquid and can 

also describe backwater phenomena (Labadie et al., 1980). The flow process is 

regarded as one-dimensional current whereby the dependent variables are the flow 

q, the velocity of flow , and the flow depth h, while the independent variables are 

the distance x and the time t (Figure 2.1). The following continuity equation, 
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expressing the conservation of mass in the flowing liquid, corresponds to the first

Saint-Venant equation:

0
x

t)q(x,

t

t)h(x,

h

F(h)
(2.1)

where:

q(x,t) is the flow (in m3/s) at location x (in m) along the sewer axis at time t

(in s).

h(x,t) is the depth of sewer flow (in m) at location x (in m) along the sewer

axis at time t (in s). 

F(h) is the cross-sectional area of flow (in m2) (Figure 2.2).

The second Saint-Venant equation, the momentum equation, with which the

resistance to flow is expressed, is derived from the equation = q/F(h) for flow

velocity (x,t) (in m/s) and Bernoulli’s theorem for instationary currents (Duncan

et al., 1970)

RS II
x

h

xgtg

1
(2.2)

where:

IS is the sewer slope.

IR is the friction slope or the slope of the line of energy of flow [see (2.3)

below].

g is the gravitational acceleration (in m/s2).

In the momentum equation (2.2) we have the following terms:

xh/  is the slope of the water surface.

x)/(( /g)  expresses the influence of the change of the energy height
2/2g along the sewer (when the flow is rapidly changing in space).

 expresses the influence of the time-change of the velocity

(when the flow is locally changing rapidly over time, the flow is

instationary).

t)/(g)/1(

IR is calculated empirically from the equation (Manning’s formula) (Labadie et

al., 1980)

  (2.3)24/32
R F(h)R(h)cqI

where c is a constant (in s2/m2/3) that depends on the sewer’s characteristics and is

equal to (n/1.486)2,  where n is  Manning’s roughness coefficient,  and  R(h) is the 

hydraulic radius of flow (in m) and is equal to R(h) = F(h)/P(h), where P(h) is the

wetted perimeter (in m) (Figure 2.2).

The  first  two  terms in  the momentum Equation (2.2) can be neglected in

most practical cases as they are considered negligible in comparison to the third

term (Wanka and Königer, 1984), in which case we have
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x

(x,t)

q(x,t)

h(x,t)

Figure 2.1. Variables in one-dimensional flow. 

RS II
x

h
. (2.4)

Using (2.3) and (2.4), the following equation for the flow is derived

x

h
IF(h)kR(h)q S

2/3 (2.5)

where the constant k is equal to 1/ c.  The Equations (2.1) and (2.5) are the basis

for the hydrodynamically modelled sewer.

P(h)

F(h) h

Figure 2.2. Cross section of a sewer with arbitrary shape.
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b) Time-Lag Links

The hydrodynamic link elements are used for modelling relatively flat sewers

where backwater phenomena may occur. However, for the mathematical modelling

of sewers with relatively steep slope, namely IS>0.001, and insignificant

backpressure, a time-lag link model can be used. In this case, the slope of the water

surface in the sewer is neglected 0x/h (uniform flow) and Equation (2.5)

becomes an algebraic function: 

.IF(h)kR(h)q(h) S
2/3 (2.6)

Based on (2.6), the initial continuity Equation (2.1) is written, after appropriate

transformations,

0
x

h
c(h)

t

h
(2.7)

where

h

F(h)
/

h

q(h)
c(h) . (2.8)

The partial differential Equation (2.7) has the following solution:

 h(x,t) = )
c

x
th(0, . (2.9)

This means that the state at point x and time t equals the state that existed at 

point 0 at time . This corresponds to state transfer (kinematic wave) with 

velocity c(h) that is given from Equation (2.8) and it may be assumed constant with

respect to the flow conditions when q(h) is nearly linear in a range of water level

values (Papageorgiou and Messmer, 1985). The time lag x/c applies in the same

manner to the flow q(x,t) as q(x,t)=q(h(x,t)) [see (2.6)].

x/ct

Assuming a sewer link with inflow qu and outflow q, the time lag is translated

into an according number of time steps for a discrete-time representation. In

addition to the time lag, a linear first-order dynamic element may be included  to

increase the modelling accuracy for the link element. More precisely, the first-

order system is introduced to take into account storage phenomena in the sewer

and the dispersion of the flow, that is, the fact that the wave attenuates, lowering

the peak flow depth and rate as it moves through the network and increasing the

flow duration at any location. This leads to the following discrete-time dynamic

equation:
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(2.10)(k)(T/ )q+q(k)T/ )(1=1)+q(k u

where:

k = 1, 2, … is the discrete time index.

q is the outflow from the time-lag link.

 is the time constant of the linear first-order system that may be estimated

experimentally.

qu is the sum of inflows to the time-lag link. Thus, if m is the total number

of inflows into the sewer stretch,  we have

qu(k)= q
m

1j

u,j(k– j)  (2.11)

where j is the time delay of inflow j.

Because the sewer stretch has a limited flow capacity qmax, we have the

constraint

qu(k)  qmax.  (2.12) 

It should be noted that due to consideration of the backpressure phenomena, the

inflows in hydrodynamic links do not need to be restricted explicitly by the flow

capacity of the sewer.

2.2.2 Reservoirs 

The reservoirs are modelled through the continuity equation

(t)qu(t)(t)uV
dt

dV
overin  (2.13)

where:

V(t) is the currently stored volume in the reservoir (in m3).

uin (t) is the inflow to the reservoir (in m3/s).

u(t) is the outflow from the reservoir (in m3/s).

qover(t) is the overflow from the reservoir (in m3/s).

The water level h that corresponds to the volume V is given by an inverse

storage function H(V).

If an overflow weir is present and the water height exceeds the height of the

weir, the reservoir will have an overflow (Figure 2.3). Under the assumption that

there is no spillback downstream of the weir, the overflow qover  over a weir  is

given (Duncan et al., 1970; Papanikas, 1981) by
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Figure 2.3. Reservoir with overflow capability.
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where:

hw is the height of the weir (in m).

hsl is the height of the slot over the top of the weir (in m).

lw is the length of the weir (in m).

µp is an overflow coefficient (Poleni formula).

µT is a coefficient for the flow under pressure from the slot (Toricelli

formula)   ( 2(2/3)µpµ  ). 

 is the area of the slot (in m2) (  = hsl lw).

2.2.3 Control Gates 

For the flow control in a combined sewer network, control gates are used. The 

control gates are placed at the end of sewer stretches or at the low points of the

reservoirs.

The outflow from a control gate depends either on the water level upstream and

downstream of the control gate or only on the water level upstream of the control

gate when there is no backpressure. The outflow from a control gate is given by the

nonlinear relationship
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)h2g(hµfu duun  (2.15)

where:

uun is the outflow from the control gate (in m3/s).

µ is a coefficient of discharge determined empirically.

f is the orifice’s ground area (in m2).

hu is the water level upstream of the control gate (in m).

hd is the water level downstream of the control gate (in m).

2.2.4 Nodes 

The propagation and merging of flows takes place at the network nodes. Two types 

of nodes can be identified:

Propagation: Nodes with one incoming link and one outgoing flow for

connecting sewers with different geometry.

Merging: Nodes where more than one incoming flows merge to one

outgoing flow.

According to the continuity conditions, the following equations hold:

For propagation nodes

uin = uout  (2.16)

where uin is the inflow to the node and uout is the outflow from the node.

 For merging nodes

uin,1 + uin,2  + ... = uout  (2.17)

where uin,i, …, i= 1, 2, …, are the incoming flows and uout is the outgoing

flow from the node.

2.2.5 External Inflows

The external inflows di occur at specific locations of the network. An external 

inflow may be present either directly at reservoirs or at the stretches of the sewer

network.

2.2.6 Treatment Plants 

Treatment plants finally receive all the water that entered the sewer network and

did not exit from the overflows. The inflow ri to a treatment plant i should not

exceed the plant’s flow capacity ri,max:

 ri  ri,max.  (2.18)
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2.3 Simulation Tools for Sewer Networks 

This section presents a survey of some of the existing commercially or semi-

commercially available software packages used for the simulation of wastewater 

systems. Most of these software products model in an integrated way the sewer 

network, the wastewater treatment plant, and the receiving waters, and they also 

take into account the pollutants in the system. A detailed description of the 

simulation software package KANSIM used in this work is given in Section 2.4. It 

should be noted that in the version used in this study, KANSIM models only the 

water flow dynamics in the wastewater system. 

The software packages reviewed in this section are MOUSE, SIMBA, 

HYDROWORKS, FLUPOL, MOSQITO, KOSIM, SYNOPSIS, SWMM, WEST, 

ICS, and SUPERLINK. 

The package MOUSE (Modelling of Urban Sewers) is one of the most widely 

used tools for modelling of urban sewer systems. In this package there are different 

modules for describing the hydrological effects and the hydraulic performance of 

sewer systems (Hernebring et al., 2002). In the general hydrological model 

MouseRDII (Rainfall Dependent Inflow and Infiltration) the hydrological processes 

are described, taking into account both the fast response component from 

impervious areas and the slow response component caused by infiltration into the 

sewer system from the surrounding soil, and in the hydrodynamic model 

MousePIPE the hydraulics of the sewer system are described using the Saint-

Venant equations. The sewer flow quality model MOUSETRAP based around the 

sewer model MOUSE was developed by a consortium including representatives of 

the Danish Hydraulic Institute, Water Quality Institute, Water Research Center 

(WRC), and others (Schütze et al., 2002). The MOUSETRAP package has a 

surface runoff quality module, a sediment transport module, an advection-

dispersion module and a water quality module in which the biochemical processes 

are modelled (Ashley et al., 1999; Schütze et al., 2002). In Hernebring et al. (2002) 

the MOUSE package was used to model the Helsingborg sewer network in 

Sweden; while a MOUSE ONLINE system was installed and connected to a 

SCADA (Supervisory Control and Data Acquisition) system (Katebi et al., 1999) 

of the Öresundsverket wastewater treatment plant of the Helsingborg municipality 

and performs a series of tasks automatically within certain intervals, such as 

collecting data from the SCADA system, generating forecasts of boundary 

conditions, transferring measured and forecast data to the MOUSE system, 

performing one or more MOUSE simulations, and possibly performing the 

extraction of data/information from MOUSE ONLINE back to the SCADA 

system. In Jacopin et al. (2001) the MOUSE model was used for modelling the 

Bourgailh and Périnot basins of the Urban Community of Bordeaux (France) in the 

frame of a project with the main scope of developing new control schemes for 

detention basins during rainfall events in order to limit the flooding risk, especially 

for heavy rainfall events, and, at the same time, to promote the solids settling 

process in basins, especially for light and medium events. 

SIMBA is a simulation platform running on top of MATLAB/SIMULINK; it 

was developed at Ifak (Institut für Automation und Kommunikation) e.V., 
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Magdenburg (Germany) (Rauch et al., 2002; Schütze et al., 2002). In SIMBA there 

are modules for simulating water flow and quality processes in the sewer systems 

(SIMBA Sewer), treatment plant, and rivers. In SIMBA the use of the general- 

purpose simulation environment MATLAB/SIMULINK allows the user to add her 

own modules, whereas the control library with defined control blocks, which is 

available in SIMBA, makes this package a convenient tool for control and 

optimisation of the overall system performance. In Frehmann et al. (2002) and 

Erbe et al. (2002) in the urban catchment area called “Schattbach” in the southeast 

of Bochum (Germany), the conveyance of the discharge and the pollutants within 

the sewer network and the facilities for rainwater treatment was conducted by use 

of the program SIMBA Sewer, whereas the SIMBA package was used to calculate 

the biological wastewater treatment plant on the basis of ASM1 (Activated Sludge 

Model No. 1). In Erbe et al. (2002), the SIMBA Sewer and SIMBA were used for 

the integrated modelling of the wastewater system of Odenthal (Germany), 

whereas in Masse et al. (2001) the SIMBAD model was used for dynamic 

wastewater treatment plant modelling of the sewerage system of Grand-Couronne, 

Normandy (France). 

The HYDROWORKS package has been developed by Wallingford Software 

(UK) and Anjou Reserche (France). HYDROWORKS is an integrated package, 

that has modules for sewer systems and rivers (Schütze et al., 2002). The hydraulic 

model of HYDROWORKS is based on the full Saint-Venant equations. 

HYDROWORKS also includes a real-time control (RTC) module and a quality 

module. A mass-conservation approach is used for modelling the transport of 

suspended sediment and dissolved pollutants, whereas no physical or biochemical 

processes are modelled in HYDROWORKS (Ashley et al., 1999; Schütze et al.,
2002). In Zug et al. (2001) this simulation package (hydraulic, quality, and RTC 

module) has been used for modelling a section of the Grand-Nancy (France) 

sewerage system, the Gentille tank, whereas in Masse et al. (2001) the sewer 

network of Grand-Couronne, Normandy (France) is modelled by using this 

simulation model. 

The FLUPOL package was developed by Agence de l’Eau Seine-Normandie 

(AESN), the Syndicat des Eaux d’Ile-de-France (SEDIF), and the Compagnie 

Générale des Eaux (CGE) (Schütze et al., 2002). The hydraulic model of FLUPOL 

uses three flow-routing models (Muskingum-Cunge, kinematic, and diffusive 

wave), whereas the quality model simulates pollutant transport (without 

dispersion), sedimentation, and erosion of sediments in sewers, but no biochemical 

processes are modelled (Ashley et al., 1999). 

The MOSQITO sewer flow quality model was developed by Wallingford 

Software, based on research carried out by HR Wallingford and WRC. MOSQITO 

simulates surface runoff, pollutant transport (without dispersion), sedimentation, 

washoff, and sediment transport, but no biochemical processes (Schütze et al.,

2002). In the quality module of HYDROWORKS, modelling developments of 

MOSQITO and FLUPOL are included. 

The package KOSIM is a sewer flow-quality model that has been developed 

and extended by several researchers and is used in engineering practice as well as 

in numerous research projects (Schütze et al., 2002). The flow on subcatchments is 

modelled by Nash cascades, whereas the flow between subcatchments is modelled 
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by translation and addition of inflow from the subcatchments. In KOSIM up to six 

pollutants can be modelled once the pollutant-specific parameters are defined and 

they are routed through the system, where they are assumed to mix completely and 

without any interactions.  

The software tool SYNOPSIS (software package for synchronous optimization 

and simulation of the urban wastewater system) is an integrated simulation 

(capable of simulating the water and quality processes in sewer system, treatment 

plant, and receiving water) and optimization tool. Three existing software packages 

are selected for implementation in SYNOPSIS (Schütze et al., 2002). The sewer 

system module of SYNOPSIS consists of the program package EWSIM, which is 

an extended (research) version of the commercially available package KOSIM. For 

the treatment plant the Lessard and Beck’s treatment plant model was selected and 

some modifications and extensions were made in this model within SYNOPSIS. 

As a river simulator within SYNOPSIS, the DUFLOW shell program has been 

selected. Besides these modules, a number of auxiliary routines have been 

implemented in SYNOPSIS, such as modules computing external inputs to the 

simulation model, routines performing the transformation of variables at the 

interfaces between the simulation submodules, and modules providing a variety of 

values that are available as options for the definition of the objective function for 

the optimization. SYNOPSIS has the ability to perform control actions with its 

optimization module. Three optimization routines, the controlled random search, 

a genetic algorithm, and Powell’s method for local optimization  have been 

implemented in the optimization module. 

The program package SWMM (Storm Water Management Model) developed 

by the U.S. Environmental Protection Agency, models flow and pollutants in sewer 

systems (Ashley et al., 1999; Schütze et al., 2002). Its transport module does not 

allow for simulation of backwater effects and pressure flows to be considered. For 

these flow processes, EXTRAN, an extended transport model, is available. 

The software WEST (World Engine for Simulation and Training) developed by 

Hemmis n.v., University of Gent and Epas n.v. in Belgium (Rauch et al., 2002; 

Schütze et al., 2002) is a general simulation environment for computing the flow 

dynamics in a network of interlinked elements. With its different modules for 

sewers, wastewater treatment plants, and rivers, and its controller that allows 

several options of control, WEST can be used for the integrated simulation and 

control of the complete urban wastewater system. In Meirlaen et al. (2002), an 

integrated modelling of the urban wastewater system of the town of Tielt has been 

accomplished by implementing surrogate models of the three subsystems (sewer 

system, wastewater treatment plant, receiving water) within the single software 

platform WEST.  

The ICS (Integrated Catchment Simulator) program developed by Danish 

Hydraulic Institute (DHI) and the Water Research Center in UK (WRC) is a 

graphical interface for setting up and running integrated models with 

feedforward/feedback of information and includes existing modules for sewer 

(MOUSE), wastewater treatment plants (STOAT), and rivers (MIKE11) (Rauch et
al., 2002). 

The SUPERLINK model is a hydraulic numerical model developed for complex 

looped sewer or channel systems using an implicit scheme with emphasis on the 
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stability and the computational speed (Ji et al., 1996). The Saint-Venant flow

equations are used to describe one-dimensional unsteady nonuniform flow under

both free-surface and pressurized flow conditions (SUPERLINK is one of the 

fastest sewer models available to solve the full Saint-Venant equations). The

SUPERLINK model setup has the convenience of including a pollutant transport

and water quality model. Besides the simulator submodel, SUPERLINK has a 

controller submodel, which is separated from and interacts with the simulator

submodel via alternating calls. In Ji et al. (1996), the SUPERLINK model was

used for a part of a large sewer network in the city of Winnipeg (Canada), and the

simulation results showed that the model achieves a significant improvement in 

computation speed compared with the USEPA EXTRAN model and can still

maintain similar accuracy. [The USEPA EXTRAN model solves the Saint-Venant

flow equations using a completely explicit finite difference scheme and offers a

node-link setup scheme aiming to solve for flow in links and head at nodes (Ji et

al., 1996; Duchesne et al., 2001).]

2.4 Simulation Program  KANSIM 

In this section, the simulation program KANSIM is presented based on the

accurate model of the sewer network that was previously described. This program

is written in C and is using three input files  one for describing the sewer network

(the topology and the geometric characteristics of the sewer network’s elements),

one for the definition of the parameters that are needed for the simulation, and one

that contains the external inflows. A detailed description of this program is given in 

Messmer (1998). KANSIM was initially considering water flow only, but has been

recently extended to also consider the pollutant dynamics.

2.4.1 Link Elements 

a) Hydrodynamic Link Elements

In the simulation program KANSIM, spatial discretization is introduced for the

numerical solution of Equation (2.1). A geometrically uniform piece of sewer

(constant slope and profile) is modelled as one link divided in n segments of length

x. Figure 2.4 shows this segmentation. For realistic modelling of the flow, the

segments have to be chosen sufficiently short. The spatial derivative  is 

replaced by the approximation

xq/

x/)qq(xq/ 1ii . After substitution in 

Equation (2.1) and some manipulations, the following ordinary first-order

differential equation is obtained per segment i (continuity equation):

i1ii
i qqV

dt

dV
 (2.19)
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where Vi = F(hi) x represents the volume stored in segment i, hi being the water

level in segment i (Figure 2.4). The differential Equation (2.19) is solved using

numerical methods (see Section 2.4.2). 

By replacing  withxh/ x/)h(h i1i  and IS with  (see Figure 2.4)

and by substituting these relations in Equation (2.5) the following equation is 

obtained:

x/hS

.hhh
x

)F(h)kR(h
q 1iiS

i
2/3

i
i  (2.20)

The variable hi is a direct function of the volume:

)H(Vh ii  (2.21)

where H(V) is the inverse function of F(h) x.  The constant hs is the difference of

the sewer bottom elevation over the length of one segment. As water level values

are available only for the beginning and the end of a segment, a parameter  is

introduced to take into account the upstream and the downstream water levels, and

a variable wi is used that can be regarded as a resistance value for the section 

between the segments i and i+1 and is calculated from Messmer (1998)

x1hWhWw
2

1i
2

ii  (2.22)

where

i
2/3

i

i
hFhkR

1
hW  (2.23)

where 10  is the partition factor. Thus, the flow between segments can be

calculated by the algebraic equation

i1iiSi /whhhq .  (2.24)

b) Time-Lag Links

For the time-lag links in the simulation program KANSIM, the time lag x/c (see

Section 2.2.1) has a constant value. This value is translated into a corresponding

number of time steps according to the relation

 = entier(l/(cNT) + 0.5)  (2.25)

where:



18 Optimal Real-time Control of Sewer Networks 

l is the length of the sewer (in m).

  is the discrete time interval of the simulation (in s). 

 is the nominal velocityNc )hF(h)/hq/(c
NN hhN  that corresponds

to the nominal water level hN, the water level that corresponds to the half of

the sewer’s height.

The function entier(x) expresses the truncation of x to the next lower integer.

For the calculation of flow, Equations (2.10) and (2.11) are used.

2.4.2 Reservoirs 

Equation (2.13), which is used for mathematical modelling of reservoirs, may be

solved numerically using the Euler-backward method, which is better with respect

to stability, or the trapezoidal rule (or 1-step Adams-Moulton method), which is

better with respect to accuracy (Lambert, 1991). In fact these methods are used in 

the program  KANSIM for  solving  all  the differential equations of the form 

 that is, also for hydrodynamic links. The Euler-backward method

approximates the differential equation by the following difference equation:

q,V

 V(k+1)=V(k)+T q(k+1)  (2.26)

whereas the trapezoidal rule employs the following difference equation:

 V(k+1)=V(k)+0.5T ( q(k)+ q(k+1))  (2.27)

where k is the discrete time index and q(k) and q(k+1) are calculated, for 

example, for hydrodynamic links from Equation (2.24). Both methods are implicit,

as V(k+1) is needed on both sides of the difference equation. Therefore, at every

time step, (2.26) [or (2.27)] is solved iteratively for V(k+1) by use of ewton

iterations.
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Figure 2.4. Segmentation of a hydrodynamic link.
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2.4.3 Control Gates 

In the simulation program KANSIM, the flow through the control gates is not

calculated by Equation (2.15); instead, the control gates are considered as link

elements that produce additional flow resistance ws when control gates are placed

between a reservoir and a hydrodynamic link or between hydrodynamic links. The

additional flow resistance is taken into account in the calculation of flow over a 

node (see Section 2.4.4 below); that is, the variable wd in Equation (2.30) is 

accordingly increased and is equal to  The variable flow resistance

w

.)w(w 2/12
s

2
d

s, which depends on the opening height of the gate and the water levels upstream

and downstream of the gate, is calculated from the relation (Messmer, 1998)

else
ab0.0259n2.4672

1

3.6nif
ab0.0802n2.2723

1

w

hu

hu
hu

s  (2.28)

where:

a is the opening height (in m) [the opening height a has a minimum value

amin so as to avoid a division by zero in equation (2.28)].

b is the width of the gate (in m).

nhu =hu/a.

The control gates are actuators of a local flow control loop. The local control

loop regulates the flow from the control gate to be near a set point as long as the

physical conditions permit. The set point of this flow can have a constant value to

be read from an input file, or a variable value at every time step of the simulation if 

some control strategy is programmed by the user. The flow cannot take the set

point value if:

the upstream water level (pressure) is too low or backpressure prevents the

flow from reaching the desired flow even with fully opened gate, or

there is a minimum admissible gate opening, leading to a flow that exceeds

the desired value beyond a certain upstream water level.

2.4.4 Nodes 

In the simulation program KANSIM, the types of nodes presented in Section 2.2.4

are considered in addition to overflow nodes. Overflow nodes have one incoming

flow and two outgoing flows. One outgoing flow is moving toward the next

element of the sewer network (along the direction to the treatment plant), and the

other outgoing flow over a weir is directed toward the final receiver. The overflow

nodes have at least one adjacent link with a storage characteristic, reservoir, or

hydrodynamic link element. For overflow nodes the following equation holds:

uin = uout,1 + qover  (2.29)
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where uin is the inflow to the node, uout,1 is the outflow that is moving toward the

following element of the sewer network, and qover  is the overflow given by

Equation (2.14).

The merging nodes are considered having two incoming and one outgoing

flow. To calculate the flow at the nodes and in analogy to the flow calculation

between segments of hydrodynamic links [Equations (2.22), (2.23), (2.24)],

upstream wu and downstream wd flow resistances of the node are considered

(Messmer, 1998).

When the adjacent links of a node are hydrodynamic link elements, wu is the

flow resistance of the last segment ( · xµ) of the incoming link element µ, and wd

is the flow resistance of the first segment ((1 )· x ) of the outgoing link element

(where  is the partition factor defined in Section 2.4.1 and xi is the length of

segment i). In case of a time-lag link as an outgoing link, wd is equal to zero 

(Messmer, 1998).

By introducing an auxiliary intermediate water level hz (Figure 2.5) at the node,

the calculation of the flow can be expressed in the following general form

(Messmer, 1998):

 (2.30)2
dout,s,dz )w(uh)(1hh

and

uzs,µuin, /whhhu  (2.31)

where uout,  is the inflow of the outgoing element  of node  and uin,  is the outflow

of  the  incoming  element  µ of node . Equation (2.31) is applied to both

incoming link elements in the case of merging nodes. It is not applied, however, in

cases of time-lag links or control gates with operative flow control loop as 

incoming elements, as in these cases uin,  is directly given. For the overflow

elements, Equation (2.30) holds true only for the straightly leaving flow uout,i,1,

whereas the flow over the weir is given by Equation (2.14).

uin, =qd,µ

outgoing

node

  incoming link 

…

…hu
hz

 hd

uout, =qu,

Figure 2.5. Variables at a node.
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2.4.5 External Inflows 

In the program KANSIM, external inflows are input data to be read from the input 

file.

2.4.6 Treatment Plants 

In the program KANSIM, the flow capacity ri,max of the treatment plant is given in 

the input file that describes the characteristics of the sewer network. 

2.5 Simplified Model of Sewer Networks 

In the simplified model of the sewer network some simplifications are introduced 

with respect to the accurate model that was described in Section 2.2 so as to keep 

the computational effort for control within reasonable levels.  More precisely, in 

the simplified model: 

For modelling the flow in the sewers, only time-lag link elements are used, 

and hence the simplified model of the sewer network cannot describe 

backpressure effects. The connection of sewer links with different 

geometry is effectuated without the use of propagation nodes, whereas only 

merging nodes are used in the simplified model.  

Overflows over weirs at reservoirs are calculated according to the reservoir 

current storage and storage capacity.  

In the following subsections, the elements of the sewer network are described 

according to the simplified model. 

2.5.1 Link Elements 

Link elements (Figure 2.6a) model the flow process in the sewer stretch. These 

elements  are   necessary  if   the  flowing   time   of   waves  along  a  sewer stretch 

significantly exceeds the sample time interval T. A real sewer stretch may be 

modelled by one single link or by a tandem connection of several link elements. 

The outflow from the link element is given by Equations (2.10) and (2.11) and the 

total inflows to the link are restricted according to Equation (2.12). 

2.5.2 Reservoirs 

Reservoirs are considered as storage elements with an inflow uin, an outflow u, and 

an overflow qover, (Figure 2.6b). The discrete-time equation describing the filling 

and emptying of a reservoir i, is 

 V(k+1) = V(k) + T(uin(k)  u(k)  qover(k))                 (2.32) 
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Figure 2.6.  Symbols of network elements. 

where:

T is the discrete time interval.

k = 0,1,...  is the discrete time index.

V(k) is the reservoir storage at time kT. 

uin(k) is the sum of inflows (from elements of the sewer network that are 

located upstream of the reservoir but also external inflows) over the period

[kT, (k+1)T].
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qover(k) is the overflow of the reservoir i over the period [kT, (k+1)T].

Instead of Equation (2.14) of the accurate model, it is assumed that an 

overflow occurs if V(k)  Vmax, where Vmax is the storage capacity of the

reservoir. A parameter d0, to be estimated empirically, is introduced in the

simple relationship in order to best fit the linear equation to the overflow

values obtained by the nonlinear relation (2.14). Thus, overflow is given by 

 (2.33)
else./]V)k([Vd

(k)q
max0

over
maxVV(k)if0

u(k) is the controllable outflow from the reservoir over the period [kT,

(k+1)T]. The controllable outflows u(k) of all reservoirs are the input

variables to be calculated by the central controller. As in the simplified

model of the sewer network some processes cannot be modelled exactly;

the outflows ui(k) should be selected from an admissible control region so

as to take indirectly into account certain physical limitations: 

 umin u(k)  umax(V(k),k)  (2.34)

where umin  0 and

 umax(V(k),k) = min{ucap,uun(V(k)), uo(V(k),k)}  (2.35)

where:

ucap is the outflow capacity of the downstream sewer stretch.

uun(V(k)) is the outflow from the reservoir that occurs when the outlet

gate is completely opened. For example, when the water level

downstream of the reservoir is near the height of the orifice and the

water level in the reservoir is greater than twice the height of the

orifice, the following relationship can be used (Bretschneider et al.,

1982) [This relationship is a simplified form of the Equation (2.15)

that is used in the accurate model of the sewer network]

u0un hfcu  (2.36)

 where:

  - c0 is an empirical parameter (in m0.5/s),

  -  f has the same meaning as in Equation (2.15), and

  - hu is the water level in the reservoir (see 2.21).

Equation (2.36) can be directly replaced in (2.32) in cases of

reservoirs with uncontrollable outflow.

uo(V(k),k) is equal to V(k)/T plus the corresponding external inflow to 

the reservoir (if there is any). This upper value guarantees that V(k) 

0.
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2.5.3 Nodes 

The nodes (Figure 2.6c) with outflows uout of the simplified model of the sewer

network correspond to the merging nodes of the accurate model of the sewer 

network (2.17).

2.5.4 External Inflows

External inflows (Figure 2.6d) of the simplified model of the sewer network are 

described in the same way as in the accurate model of the sewer network.

2.5.5 Treatment Plants 

The treatment plants (Figure 2.6e) of the simplified model of the sewer network are

described in the same way as in the accurate model of the sewer network. The

inflow r to the treatment plant is constrained by Equation (2.18).

2.5.6 Integrated Simplified Model of the Sewer Network

A particular network can be built upon the introduced elements. The whole flow

process may be considered to have a vector input u including all controllable

reservoir outflows, a disturbance vector d including all external inflows, and a state 

vector x including all reservoir storages and link outflows. Then, all model

Equations (2.10), (2.11), (2.17), (2.32), and (2.33) may be expressed in the

following general form:

 x(k+1) = f[x(k), x(k 1),...,x(k x), u(k), u(k  1),...,

u(k u), d(k), d(k 1),...,d(k d)].  (2.37)

Similarly, we have the control constraints (2.18), and (2.34) in the form

 umin u(k) umax(x(k),k). (2.38a)

and the constraints (2.12):

A u(k ) c(x(k),k) (2.38b)
u

1

where the matrix A consists of zeros and ones. Equation (2.38b) is derived by

substituting Equation (2.10) in (2.11) and keeping the controllable outflows of the

reservoirs on the left-hand side of the equation that results after the substitution.

The other inflows into the sewer (external inflows, link outflows, and

uncontrollable reservoir outflows) are subtracted from qmax on the right-hand side
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of the equation. As the outflows from the sewers are state variables [Equation 

(2.10)] and the uncontrollable reservoir outflows depend on the state variables 

[Equation (2.36)], the resulting right-hand side of Equation (2.38b) is state- 

dependent.  



Chapter 3

Flow Control in Sewer Networks

3.1 Control Objectives 

The development of a control system for combined sewer networks has as a goal 

the protection of the quality of waters that receive the outflows of the networks, as 

was mentioned in Chapter 1. To this end, the main task of the control system is the

minimization of overflows for any rainfall event. This can be achieved by: 

Using all available storage space before allowing an overflow to occur 

somewhere in the network. Moreover, if, due to strong rainfall, overflows 

are unavoidable, they should be distributed as homogeneously as possible 

over time and over the network reservoirs in order to minimize their 

polluting impact. However, if there are storage elements without overflow 

capability (no overflow weirs), the avoidance of overload of these storage 

elements is of primary importance. 

Emptying the network as soon as possible (via full exploitation of the 

treatment plant’s inflow capacity) so as to provide free storage space for a 

possible future rainfall.  

Along with these main objectives, some secondary operational objectives are 

expected to be sufficiently addressed by the control actions: 

The distribution of the current total storage volume among the reservoirs 

should be according to predefined portions (that are typically proportional 

to the reservoirs’ storage capacities); in other words, at any time but mainly 

during the emptying phase, free storage space should be available in each 

reservoir to be used in case of a possible future rainfall.   

Limitation of abrupt changes of outflows, in order to account for throttle 

gate inertia.   
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3.2 Multilayer Control System 

The flow control of a sewer network, which usually covers large areas and consists 

of a high number of reservoirs and sewers, calls for the consideration of the 

network as a whole, as the isolated control of each reservoir cannot lead to full 

utilization of the total available storage volume. A control structure that consists of 

three control layers (Papageorgiou and Mevius, 1985) (adaptation, optimization, 

and direct control, see Figure 3.1) may be used for the control of the sewer 

network. The formulation of the central control problem for the optimization layer 

on the basis of an accurate mathematical model of the sewer network, such as the 

one described in Section 2.2, may lead to long computation time for the solution of 

the associated dynamic optimization problem in real time for large-scale networks. 

Therefore, a simplified model of the sewer network, such as the one of Section 2.5, 

is used as a basis for mathematical modelling of the control problem. The solution 

of the control problem in the optimization layer delivers the trajectories for the 

outflows (control variables) and the storages (state variables) of the reservoirs that 

are used as reference trajectories for the decentralized direct control of the 

subnetworks (reservoirs). 

In the following subsections, some more details related to the specific control 

layers of the multilayer control system are presented (Figure 3.1): 

Adaptation Layer 

In this layer at time step k0 the prediction of the external inflows is performed for k 

= k0,..., k0+K 1, where K is the optimization horizon. Measurements of the rainfall 

may be used in the prediction model that calculates the predicted inflows to the 

network. The more accurate the prediction, the better the control results, though the 

sensitivity of the control to inaccurate inflow predictions is limited as repeated 

solution of the control problem in real time is performed with updated inflow 

predictions (see Section 4.4). In this layer also the current values of the state 

variables are estimated. 

Optimization Layer 

This layer calculates the control and state trajectories for k = k0,..., k0+K 1, for the 

overall simplified network. The control problem is solved using the initial values 

of the state variables and the trajectories of the expected external inflows that are 

provided by the adaptation layer. For the solution of the control problem, different 

methods can be used, like expert systems, fuzzy control, and other methods (see 

Chapter 1). The solution of the control problem corresponds to the outflows and 

storage trajectories of the reservoirs, which are used as reference trajectories for 

the direct control layer. 

Distributed Direct Control Layer 

The optimal outflows and storages of the reservoirs that are calculated in the 

optimization layer are used as reference trajectories for the decentralized control of 
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each subnetwork (reservoir). In each of these subnetworks there are local control 

systems that operate in a closed-loop structure and move the control devices, for 

example the control gates, so as to keep the real quantities near their reference 

trajectories. The local control systems are autonomous in the sense that the control 

devices operate using measurements from the subnetwork only. The coordination 

between subnetworks is done through the reference values that are provided from 

the optimization layer, taking into account the overall network. 

If some significant deviation of the predicted inflow from the real inflow occurs 

or if the local controllers cannot follow the reference trajectories, the whole 

procedure is repeated with updated inflow predictions and new estimates of the 

initial state. 

This control structure is: 

Flexible, because of its modular character, with well-defined interfaces 

allowing application of different methods at different layers. 

Reliable with respect to failures of system components due to its 

decentralized structure. Thus, as the local control strategies are 

implemented in microprocessors, if the central computer has a failure or 

communication channels to the local systems are cut, the local systems may 

consider as reference trajectories some suitable and safe (though non-

optimal) stored values. Also, if a local microprocessor fails, the central 

computer defines new reference values for the microprocessors that are still 

functioning, taking into account the failure. 

Efficient due to the real-time operation that is automatically adaptable to 

changing exogenous conditions, and also due to the global consideration of 

the overall network. 

This book is focused on the analysis and study of the control methodologies 

used in the optimization layer. 

3.3 Studies of Water Resource Systems 

The development of optimization techniques for planning, design and management 

of complex water resources systems has been the subject of many investigations 

throughout the world.  The choice of the method to be used for the optimization 

depends on the characteristics of the reservoir system being considered, on the 

availability of data, and on the specific control objectives and constraints. Many 

researchers in the field have considered methods such as linear programming, 

dynamic programming, nonlinear programming, linear-quadratic control, genetic 

algorithms, and combinations of these methods. 

Linear programming is a very powerful and easy-to-use form of optimization. 

For example, in Gutman (1986) a linear programming regulator operates in an 

open-loop optimal feedback (or model-predictive) structure to control in real time a 

double water tank laboratory process and the water level of a hydroelectric power 

station reservoir leading to satisfactory performance. For sewer network control, 

linear programming  is  used in Bradford (1977) for the  development  of  a control 
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Reference Trajectories
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Figure 3.1. Hierarchical control structure for sewer networks.

algorithm for automatic control of detention storage in a large-scale combined

sewer system and in Nelen (1994) for the real-time control of urban drainage

systems, whereby the nonlinear programming problem is replaced by a succession

of linear programming problems. Linear programming is most efficient for

problems that can be expressed in linear terms.
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Dynamic programming has been used extensively in the optimization of water 

resources systems, as the nonlinear and stochastic features, which characterize a 

large number of water resources systems, can be readily translated into a dynamic 

programming formulation. However, when dynamic programming is applied to 

multiple reservoir systems, the usefulness of the technique is limited, as the 

computer memory and computation time requirements are exponentially 

increasing. In such cases, dynamic programming can be applied only if the 

complex problems with the large number of variables are decomposed into a series 

of subproblems, which are solved recursively. For example, in Zessler and Shamir 

(1989), progressive optimality, an iterative dynamic programming method, is used 

for determining optimal operation of a water supply system. The algorithm is 

solved iteratively over the time steps and network subsystems, and converges to 

the optimum from any initial solution. Discrete differential dynamic programming 

(an iterative technique in which the recursive equation of dynamic programming is 

used to search for an improved trajectory among the discrete states in the 

neighborhood of a trial trajectory) is used by Heidari et al. (1971) for a four-unit, 

two-purpose water resources system and in Meredith (1975) to determine the 

optimal operation policy of a multiple-purpose multiple-reservoir system, whereas 

in Murray and Yakowitz (1979) constrained differential dynamic programming is 

applied to multireservoir control problems. Combinations of linear programming 

and dynamic programming were also proposed for water system control; for 

example, in Grygier and Stedinger (1985) such a combination is used to optimize 

the operation of multireservoir hydrosystems as well as in Yeh and Becker (1982) 

for the development of practical procedures for the analysis of multiple-purpose, 

multiple-facility reservoir systems to guide real-time decisions concerning the 

optimal operation of the system. In the context of sewer network control, dynamic 

programming has been used for optimizing the design of drainage systems 

(Robinson and Labadie, 1981), for designing the least expensive network of sewers 

that will drain water from a number of discrete sources (Walters, 1985), for 

designing the least-cost drainage networks, which include storage elements (Froise 

and Burges, 1978), and for control of the combined sewer network of  the city and 

county of San Francisco (Labadie et al., 1980). 

Nonlinear programming offers a more general mathematical formulation than 

linear and dynamic programming and can effectively handle nonlinear objective 

functions and nonlinear constraints. Methodologies based on Pontryagin’s 

maximum principle are used for solving the scheduling problem of hydroelectric 

power plant chain (Sakr and Dorrah, 1985), for solving the problem of the most 

economical operation of hydraulic plants in electric power systems (Hano et al.,

1966), for determining the operation of a hydro-steam generating system for the 

minimum generating costs (Dahlin and Shen, 1966), and for the optimal control of 

water supply networks (Nielsen and Ravn, 1985). Conjugate gradient algorithms 

are used for the optimal management of hydrostorage reservoirs (Sirisena and 

Halliburton, 1981), and for the optimal control of the complex multireservoir 

Mahaweli system in Sri Lanka (Mizyed et al., 1992). In Chu and Yeh (1978), for 

the optimization of real-time operations of a single reservoir system, nonlinear 

duality theorems and Lagrangian procedures are applied, whereby the 

minimization of Lagrangian is carried out by a modified gradient projection 
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technique along with an optimal stepwise determination technique, whereas in 

Saha and Khaparde (1978) the optimal scheduling of hydrothermal power systems 

is performed by a feasible direction algorithm. In Foufoula-Georgiou and Kitanidis 

(1988) an algorithm that combines elements of discrete dynamic programming 

(i.e., discrete state space, backward stagewise optimization) with elements of 

constrained optimization (i.e., nonlinear programming with equality constraints) is 

used for the optimal control of a multireservoir system. In Bell et al. (1973), 

optimal control theory is used for real-time automated control of combined sewers, 

whereas in Pleau et al. (1996), Méthot and Pleau (1997), Pleau et al. (2001) 

nonlinear programming is applied for the flow control of the Québec Urban 

Community sewer network; in Gelormino and Ricker (1994) a model-predictive 

control strategy that uses a mixed linear/quadratic objective function is applied to 

the Seattle metropolitan area in order to minimize combined sewer overflows. A 

solution algorithm developed for the sewer network control problem applying the 

discrete maximum principle has also been used (Papageorgiou, 1983, 1985; 

Papageorgiou and Mayr, 1985, 1988; Marinaki, 1995, 2002; Marinaki and 

Papageorgiou, 1997a, b, 1998, 1999).  

Linear-quadratic control theory has been extensively applied in many fields, 

and a number of investigators have incorporated various aspects of linear-quadratic 

regulator theory in their proposed solutions of reservoir operations problems. For 

example, in McLaughin and Velasco (1990) a linear-quadratic control algorithm is 

applied to a system of hydropower reservoirs, in Garcia et al. (1992) a real-time 

compensation scheme for multipool canals is developed using linear-quadratic 

methods, and in Winn and Moore (1973) a multivariable feedback controller is 

used for the control of combined storm-sewer systems. A linear multivariable 

feedback regulator, designed using the linear-quadratic methodology, is used for 

the sewer network control problem (Messmer and Papageorgiou, 1992; Marinaki, 

1995, 2002; Marinaki and Papageorgiou, 1996b, 1997a, b; Marinaki et al., 1999, 

Marinaki, 2002). 

Genetic algorithms have been proposed as a means of global optimization for a 

variety of engineering design problems. They mimic the natural genetic processes 

of evolution, deliberately keeping a range of good solutions to avoid being drawn 

into low-quality local optima. Genetic algorithms are robust methods for searching 

the optimum solution to complex problems, although they may not necessarily lead 

to the best possible solution. In Liu and Wu (1993), a technique combining 

analytical and knowledge models is proposed for modelling and control of large-

scale water distribution systems, in Lee and Ellis (1996) genetic algorithms are 

applied to a simple network location problem, and in Wardlaw and Sharif (1999) 

they are applied to a four-reservoir, deterministic finite-horizon problem. 

Conventional rule-based control and fuzzy logic for real-time flow control of 

sewer systems have also been proposed. Conventional rule-based control systems 

are based on a large number of rules, whereas control systems based on fuzzy logic 

combine the simple rules of an expert system with a flexible specification of output 

parameters. In Klepiszewski and Schmitt (2002), a comparison of a conventional 

rule-based flow control system with a control system based on fuzzy logic is 

effectuated for a combined sewer system and in Fuchs et al. (1997) a study was 
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carried out for a part of the sewer system of the city of Flensburg using fuzzy logic 

for the real-time control of the sewer system. 

3.4 The Pursued Approach 

As already mentioned, the main focus of this monograph is the development, 

testing and application of a control system for the central flow control in combined 

sewer networks. The methods employed in this study for the solution of the central 

control problem are nonlinear optimal control (Chapter 4) and multivariable 

feedback control (Chapter 5). The selection of these two methods was made on the 

basis of their distinguished qualities. More specifically, nonlinear optimal control 

was selected because, as already mentioned in Chapter 1, it is potentially the most 

efficient approach, as it can directly take into account inflow predictions, and 

process nonlinearities and constraints; on the other hand, nonlinear optimal control 

calls for the development and implementation of a rather sophisticated computer 

code. Multivariable feedback control was selected (Chapter 1) because it may 

approximate the efficiency of nonlinear optimal control if properly designed but 

needs a much simpler computer code. Moreover, it should be emphasized that both 

approaches lead to quite straightforward general development procedures for 

virtually any sewer network, in contrast to other application-specific heuristic or 

rule-based approaches. 

Some modifications and extensions of the methodologies used in the past for 

both employed approaches are introduced in order to increase their efficiency. 

More precisely, in the nonlinear optimal control approach, modifications 

(Papageorgiou and Marinaki, 1995) were introduced in the feasible-direction 

algorithm that mainly concern the constraints of the control variables, so as to 

reduce the computational effort that is needed until convergence. In the 

multivariable feedback control, appropriate modifications were introduced 

(Marinaki and Papageorgiou, 1996a) so as 

to take into account the time delays of the control and state variables, 

to develop a fully controllable linear model, and 

to develop a feedback controller that has additionally anticipatory 

behaviour. 

Finally, with respect to a previous study (Marinaki, 1995), in this book: 

A more realistic simulation model, the program KANSIM presented in 

Section 2.4, is used for simulation testing and comparison purposes. 

The rolling horizon method (Papageorgiou, 1988, 1997) is used for the 

real-time application of nonlinear optimal control with updated inflow 

predictions and updated initial conditions. 

An investigation is performed concerning the sensitivity of the control 

efficiency with respect to prediction inaccuracies during the application of 

optimal control in real time. 

Application of the control system to a large-scale real combined sewer 

network that is located at the river Obere Iller in Bavaria is performed. The 
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evaluation of the efficiency of the methods is done on the basis of the 

results obtained for this network with different inflow scenarios. These 

investigations provided the basis for the development and implementation 

of the real control system actually operated in the sewer network of Obere 

Iller.



Chapter 4 

Nonlinear Optimal Control

4.1 Performance Criterion 

The main control objectives and the secondary operational objectives that were

mentioned in Section 3.1 are considered directly in nonlinear optimal control

(Marinaki and Papageorgiou, 1995). This is done via formulation of a nonlinear

cost function that is minimized taking into account the state equation and the 

constraints.

The performance criterion to be minimized has the general form

 J= [x(K)] + (4.1)

1K

0k

M

1j

jj 1)](k(k),(k),[w uux

where:

K is the optimization time horizon.

j is the subgoal objective for j = 1,...,M. 

wj is the weighting factor corresponding to subgoal j.

 is the terminal cost function.

For the present problem, the performance criterion is suggested to contain the

following five subgoals:

For avoiding overload in storage elements without overflow, one may use 

(4.2)
y
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2
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n
(k)]V[Vkx

where [c] = min [0, c] for c R, and ny is the total number of storage

elements of the sewer network without overflow capability.
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Minimization of overflows is pursued via

 ) (4.3)k(q
n
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x
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where Si are weighting factors and nx is the total number of reservoirs of

the sewer network that have overflow weirs. According to the choice of the

weights Si, the minimization of overflow from one reservoir can be

regarded as more or less important than the minimization of overflow from

other reservoirs.

Maximum utilization of the treatment plant is pursued via

(4.4)
r
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where nr is the total number of treatment plants. This term keeps the inflow 

to each treatment plant near its flow capacity so that the sewer network is

emptied as soon as possible to provide free storage space for a possible

future rainfall.

Desired distribution of reserve storage volume is considered by use of

(4.5)
x

1i

2
Gii4

n
(k)]V(k)[Vkx

 where VG is the sum of all reservoir storages at time k, that is,

(4.6)
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and i are chosen parameters such that 

(4.7)
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The subgoal 4 attempts to distribute the current global storage VG(k)

according to the parameters i, that is, according to the reservoir storage

capacities  The desired distribution attempted via the subgoal.V maxi, 4 is 

meant to be active mainly during the emptying phase, so that equal free

relative storages are provided to each reservoir in the event of a future

rainfall.

Abrupt changes of outflows are penalized via
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(4.8)2
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in order to account for throttle gate inertia, where Qi are weighting factors. 

The terminal cost [x(k)] is just a sum of the state-dependent subgoals

and for the final time K.

,21,

4

The use of quadratic terms in the formulation of the various subgoal objectives

aims, besides minimization, at homogenizing in space and time the corresponding 

penalized quantities. For example, subgoal 2 in (4.3) attempts not only to 

minimize the overall overflows but also to distribute them to a certain extent in 

space and time, in accordance with the chosen weights Si.

It should be noted that the criterion J represents a combination of different,

partly competitive subgoals and can hardly be given an overall physical

interpretation. It serves, by its definition, as a vehicle toward satisfactory control in 

the sense of a desired priority order between partially conflicting subgoals and

restrictions. It is possible to specify a priority order for the subgoals by appropriate 

choice of the weighting factors wj. The choice of the weighting factors wj is 

performed via a preliminary trial-and-error procedure taking into account the

desired priority order and the physical dimensions of the quantities involved. The

trial-and-error procedure starts by giving some initial values to the weighting

factors. Then, the nonlinear optimal control problem is solved for various

representative inflow scenarios and, if the control results are not satisfactory, the

values of the weighting factors are changed appropriately, the control problem is 

solved again and so forth. The desired priority order for the subgoals mentioned

previously is 1, 2, 3, 4, 5, as the first three subgoals represent the main control

objectives of the control system for sewer networks, and the last two subgoals are

secondary operational objectives. 

4.2 Mathematical Problem Formulation 

The mathematical optimization problem to serve as a generic tool for central real-

time combined sewer network control can be stated as follows:

For given inflows d(k), k=0,...K 1; given initial conditions x(0); given all

retarded variables with negative time arguments; find the optimal trajectories

u(k), x(k+1), k=0,...,K 1, minimizing the performance criterion (4.1) subject to

the state Equation (2.37) and the constraints (2.38). 
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4.3 Solution Algorithm 

4.3.1 General Problem Formulation 

For the solution of the nonlinear optimal control problem a feasible direction
algorithm is used that has been developed applying the discrete maximum

principle (Papageorgiou, 1996). In its present form, the algorithm has been

extended to consider directly the state-dependent control constraints (4.12), which

improves significantly the computational efficiency (Papageorgiou and Marinaki,

1995).

The general problem considered in the solution algorithm is that of minimizing

a cost function

(4.9)

1K

0k

k](k),(k),[][J uxx

subject to the state equation 

 x(k+1)=f[x(k),u(k),k], k=0,...,K–1  (4.10)

(4.11)0(0) xx

and the constraints

 umin[x(k),k] u(k) umax[x(k),k], k=0,...,K–1  (4.12)

that may be brought to the general form

 h[x(k), u(k), k] 0 ,  k=0,...,K–1  (4.13)

where , , h Rq are twice continuously differentiable functions, and x Rn and 

u Rm are the state and control vectors, respectively.

4.3.2 Necessary Optimality Conditions 

The extended discrete-time Hamiltonian function for this problem is 

k](k),1),+(k(k),(k),[H
~

µux = [x(k),u(k),k] + (k+1)T
f[x(k),u(k),k] + 

   + µ(k)T
h[x(k),u(k),k]  (4.14)

where (k+1) Rn and µ(k) Rq are the Lagrange and Kuhn-Tucker multipliers,

respectively, for the corresponding equality and inequality conditions. The gradient
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of J with respect of u, taking into account the equality constraints (4.10), is given

by (notation: xy = x/ y)

 (4.15)1k(k) T
(k)fg uu k

where the variables Rn satisfy

(k)= H (k)

~
x , k=0,...,K–1  (4.16)

( )= x(K).  (4.17)

The reduced gradient , with regard to the inequality constraints (4.12), has the 

components
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where pi(k) is a search direction. The scalar product of two vector trajectories (k),

(k), for k=0,...,K–1, is defined as follows:

 (4.19)
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Furthermore, a saturation vector function sat( ) is defined to have the components

 (4.20)

else.

if

if

)(sat

i

mini,imini,

maxi,imaxi,

i

With the above definitions, the necessary conditions for optimality are given by

(4.10), (4.11), (4.13), (4.16), (4.17), and

0u(k)H
~

 (4.21)

 µ(k)T
h[x(k),u(k),k] = 0  (4.22)

 µ(k) 0.  (4.23)

Hence, if these equations are satisfied simultaneously by some trajectories

x(k+1), u(k), (k), and µ(k), a stationary point of the optimal control problem has 
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been found. Defining hi[x(k),u(k),k]=[ui(k)–ui,min(xi(k),k)][ui(k)–ui,max(xi(k),k)], it 

follows from (4.15) and (4.21)

else.0

(4.24)k](k),[xu=(k)uork](k),[xu=(k)uif

]k](k),[xuk](k),[xu(k)(k)/[2ug
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4.3.3 Structure of the Solution Algorithm

The necessary conditions for optimality constitute a two-point boundary value

problem (TPBVP). A solution algorithm for this problem can be obtained by using

the following feasible direction algorithm:

Step 1:  Select a feasible initial control trajectory u
0(k), k=0,...,K–1. Set the

iteration  index i=0.

Step 2:  Using ui(k), k=0,...,K–1, solve (4.10) from the initial condition (4.11)

to obtain x
i(k+1).

Step 3: Using u
i(k), x

i(k+1), k=0,...,K–1, solve (4.16) from the terminal

condition (4.17) to obtain i(k) and calculate the gradients g
i(k) and

i(k) from (4.15) and (4.18), respectively, and Kuhn-Tucker

multipliers µ
i(k) from (4.24).

Step 4: Specify a search direction p
i(k), k=0,..., –1.

Step 5: Apply a one-dimensional search routine along the p
i-direction to

obtain u
i+1(k). The corresponding line-optimization problem reads:

(k)]}(k)[J{min ii

0
pusat

where  is a scalar step length. (During the solution of the line

optimization problem, repeated calculations of the states x(k+1), the

gradients g(k) and (k), and the multipliers (k) and µ(k) are

performed.) Then, calculate the controls from u
i+1(k) = sat[ui(k) + 

i
p

i(k)].

Step 6: If for a given scalar >0 the inequalities

[ i( ), i( )] <    and µ
i(k) 0,  k=0, ...,K–1

hold, stop. Otherwise, set i=i+1 and go to step 2. [All necessary

optimality conditions are satisfied by the algorithm if (k) = 0 and

µ(k) 0 k [0, K–1] (Papageorgiou and Marinaki, 1995).]

The necessary conditions and the solution algorithm may be easily extended to 

consider variables with time delays such as those appearing in Equations (2.37),

(2.38b), and (4.1) (Papageorgiou and Marinaki, 1995).

In cases of a convex objective function (4.9) and linear model Equations (4.10)

and constraints (4.12), a global minimum will be reached at convergence. In the 

general nonlinear case, the algorithm will reach at least a local minimum at

convergence. No difficulties with unsatisfactory local minima were encountered

when solving the sewer network control problem for different inflow scenarios.
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It is important to note that in this algorithm at the beginning of each iteration, 

the active bounds, for which i(k) = 0 according to (4.18), are memorized by the 

algorithm. These active bounds are forced to remain active until the end of the 

corresponding iteration; that is, the concerned controls are not calculated from 

sati[u
i(k) + p

i(k)] but from ui,max(x(k),k) or ui,min(x(k),k), according to which 

bound was activated. As a consequence, the projected gradient components i(k) of 

the memorized actively bounded controls are not calculated from (4.18) but are set 

equal to zero for the duration of the corresponding iteration. This measure is 

necessary to guarantee consistency of the respective calculations of i(k) and ui(k)

during the iteration. To see this, consider for example the case where ui(k) = 

ui,max(x(k),k) and pi(k)>0 at the beginning of the iteration; then i(k) = 0 according 

to (4.18), that is, ui(k) is expected to remain on its upper bound for positive line 

steps . owever, because ui,max depends on x(k), and x(k) depends on all previous 

u( ), =0,..., k–1, a line step  may increase ui,max(x(k),k) more rapidly than ui(k), 

that is, deactivate the control bound. In this case, i(k) = 0 is incorrect and leads to 

an erroneous calculation of J ( ). These situations are avoided, and consistency of 

calculations is established, if, as mentioned above, ui(k) is forced to remain equal 

to ui,max(x(k),k) for the duration of the corresponding iteration, in which case i(k) = 

0 is correct. In some practical applications, it was found that this measure 

decelerates to some extent the algorithm’s convergence. To avoid this, the measure 

may be applied only after the manifest appearance of line search difficulties, that 

is, when for two continuous iterations of the algorithm a restart is effectuated due 

to problems in the sectioning or bracketing phases as those mentioned in Section 

4.3.6, due to the mentioned inconsistency. 

4.3.4 Specification of a Search Direction 

Several methods can be used in step 4 of the algorithm for the specification of the 

search direction p
i (Bunday, 1984; Scales, 1985; Fletcher, 1987). All these 

methods use a search direction that satisfies (p
i
, g

i
) < 0, which guarantees that the 

derivative dJ/d  is always negative for =0 (except if u
i
 is a stationary point) and 

therefore the objective function can be improved for some i >0 (Gill et al., 1981). 

The control constraints are taken into account by using the reduced gradient 
i
 for 

all methods. 

Some of these techniques are the steepest descent method, the conjugate 

gradient methods, and the quasi-Newton methods.   

Steepest Descent 

Steepest descent is the simplest but unfortunately the least efficient method for the 

specification of a search direction. It is based on the steepest descent direction, 

namely (for convenience the time index k is omitted, but each of the formulas 

below is executed for all k=0,…,K 1)

 p
i
= g

i
.         (4.25)  
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Steepest descent typically leads to a quick approach of the minimum, if the

initial guess u
0 was chosen far from the minimum. However, in a vicinity of the

minimum the method is known to be slow.

Conjugate Gradient Methods

Conjugate gradient methods approximate the simplicity of steepest descent and the

efficiency of quasi-Newton methods. There are two main conjugate gradient

methods, namely Fletcher-Reeves (FR) and Polak-Ribiere (PR). The search

direction according to Fletcher-Reeves is as follows: 

 p
i
= g

i
+

i
p

i 1
 (4.26)

where
0
=0, and for i 1

i = ( i, i)/( i 1 , i 1).  (4.27)

For i=0 we have p
0
= g

0
, that is, the method starts with the steepest descent

direction. For Polak-Ribiere we also have (4.26) but i is calculated from 

i = (( i i 1), i)/( i 1, i 1).  (4.28)

The Fletcher-Reeves method requires the storage of three, whereas the Polak-

Ribiere method requires the storage of four mK-dimensional arrays, thus these

methods can easily be applied to problems with hundreds or even thousands of

variables. Both methods produce descent directions if the line search is exact, as

can be easily shown.

Quasi-Newton Methods

Quasi-Newton methods require more complex calculations for the specification of

a search direction. There are two main quasi-Newton methods, the DFP proposed

in 1963 by Davidon, Fletcher, and Powell, and the BFGS proposed independently

in 1970 by Broyden, Fletcher, Goldfarb, and Shanno.

The search direction calculation according to DFP is as follows:

 p
0= g

0
(4.29)

and for i 1

i 1
 = u

i
u

i 1
 (4.30)

y
i 1

=
i i 1

 (4.31)

z
i 1

= y
i 1

+ [(v

2i

0j

j
,y

i 1
)v

j
 (w

j
,y

i 1
)w

j
]  (4.32)
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 v
i 1

= ( 
i 1

, y
i 1

)
1/2 i 1

 (4.33)

 w
i 1

= ( z
i 1

, y
i 1

)
1/2

z
i 1

 (4.34)

p
i = g

i [(v
1i

0j

j, i)vj  (wj, i) w
j].  (4.35)

Because of the sums in (4.32) and (4.35), the vectors v, w of all previous

iterations j=0,...,i 1 must be stored. This means that the storage requirements of the

method increase steadily during application. This increase may be limited,

however, through periodic restart (see Section 4.3.6).

The search direction calculation according to BFGS is as follows:

 p
0= g

0  (4.36)

and for i 1 and for
i 1

, y
i 1

, v
i 1

 and w
i 1

as in Equations (4.30), (4.31), (4.33),

and (4.34), respectively, of the DFP method:

 z
i 1

= y
i 1

+ [(v
2i

0j

j
, y

i 1
)v

j
 (w

j
, y

i 1
)w

j
+(b

j
, y

i 1)bj]  (4.37)

 b
i 1

= ( 
i 1

, y
i 1

)
1/2

 (y
i 1

, z
i 1

)
1/2

v
i 1

w
i 1

 (4.38)

p
i
= g

i

[(v

1i

0j

j, i)vj  (wj, i) w
j + (bj, i) b

j].  (4.39)

These formulas indicate that the computational effort per iteration for BFGS is

higher than for DFP, as BFGS requires storage of three vectors (v, w, b) from all

previous iterations j = 1,...,i 1, whereas DFP requires storage only of two vectors

(v, w).

Both BFGS and DFP may be shown to produce descent directions of search.

For exact line search, BFGS and DFP produce identical results, but for inexact line

search they may show different efficiency.

4.3.5 Line Search Algorithm 

In step 5 of the solution algorithm there is the subproblem of finding the line

minimum on a specified search direction that uses calculations of 

J{sat[u
i
(k)+ p

i
(k)]} for corresponding values of . The line minimum satisfies 

dJ/d =0.

The line search algorithm specifies in corresponding iterations a sequence of

steps { j} and terminates when a step has been found that satisfies the following

two conditions (the superscript i is omitted for convenience):

 J( )  J(0) +  J (0)  (4.40)

J ( )  J (0)  (4.41)
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where  [0, 1/2] and <1 are pre-chosen parameters and J( )= J{sat[ui(k) + 

p
i
(k)]}. 

Condition (4.40) provides an upper bound for the line search and guarantees 

that there is improvement of the cost function at each iteration, whereas condition 

(4.41) guarantees that the improvement of the cost function is not negligible. The 

accuracy of line search is higher if  is closer to zero. A highly accurate line search 

may require many iterations and reduce the efficiency of the overall optimal 

control algorithm. A low-accuracy line search may also reduce the efficiency of the 

overall algorithm leading to a higher number of overall iterations. An appropriate 

choice of  depends on the concrete application problem but also on the employed 

search direction method.  

The line search algorithm includes the bracketing phase that attempts to locate 

a bracket [ai, bi] (the bracket is characterized by J´(ai) < 0 and J´(bi) > 0) that 

includes the line minimum, and the sectioning phase that produces a sequence of 

brackets [aj, bj] with diminishing length. The sectioning phase involves polynomial 

interpolation. 

Bracketing Phase 

The bracketing phase starts with 0 = 0 and an initial step 1, for example 1 = 

2(J
i 1

J
i
)/J (0). This choice of 1 is found using quadratic interpolation. Each 

iteration i of the bracketing phase ends up either with specification of a line 

minimum (in which case no sectioning phase takes place), or with specification of 

a bracket to be passed over to the sectioning phase, or with a new step i+1 to be 

passed over to the next bracketing iteration. To this end, each bracketing iteration 

executes the following steps (Fletcher, 1987; Papageorgiou and Marinaki, 1995): 

Step 1:  Calculation of J(
i
).

Step 2:  If J(
i
) > J(0) + 

i
J (0) or J(

i
)  J(

i 1
), then

 a
i
 = a

i 1
, b

i
 = 

i
 gives a bracket that includes the line minimum and 

the bracketing phase is terminated.  

Step 3:  Calculation of J (
i
).

Step 4:  If | J (
i
)|  J (0), the line search is terminated. 

Step 5:  If J (
i
)  0 then 

a
i
 = a

i 1
, b

i
 = 

i
 gives a bracket that includes the line minimum and 

the bracketing phase is terminated 

else

set
i+1

 = 
i + 1

(
i i 1

), where 1  1. (For example, with 1 = 2 

the step is doubled at each iteration of the bracketing phase. This 

speeds up the bracketing phase if the initial step 1 was chosen too 

short.)

Sectioning Phase 

The sectioning phase also executes a series of iterations j, each ending either with a 

step j that satisfies (4.40) and (4.41), in which case the line search terminates, or 
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with a new shorter bracket [a
j
,

j
] or [

j
, b

j
], for the next iteration. Each sectioning 

iteration j executes the following steps: 

Step 1:  Choice of 
j

[a
j

+
2
(b

j
a

j
), b

j 3
(b

j
 a

j
)] via interpolation 

(quadratic or cubic interpolation). 

Step 2:   Calculation of J(
j
).

Step 3:   If J(
j
) > J(0) + 

j
J (0) or J(

j
)  J(a

j
), then  

a
j+1

= a
j
,  b

j+1
 = 

j
is a shorter bracket for the next iteration. 

Step 4:   Calculation of J (
j
). 

Step 5:   If J (
j
) J'(0), the line search is terminated. 

Step 6:   If J' (
j
)  0 then  

a
j+1

= a
j
,  b

j+1
 = 

j
is a shorter bracket for the next iteration 

else

a
j+1

=
j
, b

j+1
= b

j
 is a shorter bracket for the next iteration. 

The predefined parameters 2, 3, 0 < 2 < 3  0.5 guarantee that there will be a

nonnegligible reduction of the bracket from iteration to iteration and it then follows 

that 

b
j+1

 a
j+1

 (1
2
) b

j
 a

j
        (4.42) 

which guarantees the convergence of the algorithm. The step 
j
 that is found at 

convergence is the step i of the corresponding overall iteration. 

4.3.6 Restart 

Due to nonquadratic cost functions or due to inexact line search, the algorithm may 

encounter difficulties during the iterations. A degenerated search direction may be 

detected by being approximately orthogonal to the gradient, or even by being an 

ascent direction. For this reason, the following condition of sufficient negativity
should be checked at each iteration: 

 (pi, i) [(pi,pi)( i, i)]1/2         (4.43) 

where B is a suitable positive parameter. If (4.43) is violated, then a restart should 

be effectuated. Restart means to interrupt the running iteration and start a new one 

with steepest descent. The following iterations may then continue normally, 

according to the chosen search direction method. 

Independently of (4.43), a periodic restart every N iterations, where N<<mK, 

is known to improve the efficiency of the algorithm. Moreover, in case of 

application of a quasi-Newton method, a periodic restart limits the amount of 

required computer space and the computing time per iteration. 

Moreover, restart is effectuated during a bracketing iteration i if for a step i the 

value J ( i) is less than zero while the value J( i) is greater than J( i 1) (which may 

occur if the function to be minimized is non-convex) or during the sectioning phase 
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when the number of iterations exceeds a prespecified number while the equations 

(4.40) and (4.41) are not yet satisfied. 

4.3.7 Algorithm Comparisons 

In the feasible direction algorithm presented previously, an important observation 

concerns the constraints (2.38b). These constraints can be regarded either 

indirectly, by introducing penalty terms in the objective function, or directly by 

using the projection method (Rosen, 1960, Kirk, 1970) in the feasible direction 

algorithm. However, it should be noted that the modifications needed to 

incorporate the projection procedure in the solution algorithm (Papageorgiou and 

Marinaki, 1995) increase the code significantly. Moreover, the projection 

procedure increases the computational effort per iteration. Thus, in practical 

applications, it should be checked if the indirect approach with the penalty terms is 

beneficial with respect to the computational effort.  

For the sewer network control problem that is studied here, both methods, each 

with or without the measure concerning the x-dependent active control bounds (see 

Section 4.3.3), were tested initially for an optimization horizon equal to 6 h. More 

precisely, the comparison of the following four approaches was performed: 

The first approach uses penalty terms in the cost function to take into 

account the control constraints (2.38b) and forces x-dependent control 

bounds, which are active at the beginning of an iteration, to remain active 

until the end of the corresponding iteration (curve k1 in Figure 4.1). 

The second approach uses the same method of the first approach regarding 

the control constraints, but the measure concerning the active control 

bounds is automatically switched on only when line search difficulties 

appear, which usually may be the case only when the algorithm has 

approached the minimum (curve k2 in Figure 4.1). 

The third approach uses the projection method to take into account the 

control constraints (2.38b) and the measure concerning the active control 

bounds for all iterations (curve k3 in Figure 4.1). 

The fourth approach uses again the projection method, but the measure 

concerning the active control bounds is applied only in the final iterations 

(curve k4 in Figure 4.1). 

It may be seen from Figure 4.1 that when the control constraints are considered 

indirectly by introducing penalty terms in the objective function (curves k1, k2), 

the computation time needed for reaching the minimum is less than in the 

corresponding opposite case (curves k3, k4). More precisely, the CPU times in 

Workstation HP 700 required for practical convergence of the algorithm are 3.7 

min, 2.8 min, 6.1 min, and 7.2 min for the four respective approaches. 
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Figure 4.1. Decreasing cost function values in dependence of the computing time for the

search direction method DFP using the four approaches.

These results indicate that the second approach needs the least computation

time for reaching the minimum (2.8 min) and is the most efficient method for the

numerical solution of the present problem. For this reason we apply in the

following discussion this approach for the calculation of the optimal state and

control trajectories.

Using this approach a comparison between the methods used for the

specification of the search direction, namely the steepest descent method, the

quasi-Newton methods DFP and BFGS, and the conjugate gradient methods of

Fletcher-Reeves and Polak-Ribiere, is effectuated so as to find their respective

efficiencies with respect to the computation time needed for numerical solution of 

the particular sewer network control problem. Scaling was not found to improve

the computational efficiency of any method.

The search direction methods differ from each other with respect to the mean

computation time they require for each iteration, and with respect to the mean

performance function amelioration they produce at each iteration. A clear picture 

of the performance of the different methods is provided in Figure 4.2, which

depicts the objective function value versus the required CPU time (in a

Workstation HP 700) for each method after 500 iterations.

The two numbers appearing in parenthesis next to each method, refer to the

frequency of restarts (see Section 4.3.6) and the value of  (see Section 4.3.5), 

respectively, in the feasible direction algorithm. These two parameters have an

impact on each method’s efficiency, and they were given the indicated values after

a preliminary investigation aiming at maximising the performance of the concerned

method.
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The quasi-Newton and conjugate gradient methods perform a significant 

amelioration of the objective function within few minutes. It can be seen (Figure 

4.2, Table 4.1), for example, that DFP (20, 0.5) reduces the value of the cost 

function virtually to its minimum in 2.8 min. Afterward, there is virtually no 

amelioration of the objective function. Taking into account the computation time 

needed and the amelioration of the cost function, we can say that DFP (20, 0.5) is 

the most efficient method for the numerical solution of the particular optimal 

control problem.  

The achieved computation times ensure the real-time applicability of the 

method. It should be noted that in the real-time applications the optimization 

horizon is less than 6 h (see Section 7.2.3), which leads to accordingly less 

computation time for virtually reaching the cost function minimum. It should also 

be noted that if the algorithm encounters convergence difficulties leading to long 

computation times, it may be interrupted (e.g., after a maximum time is reached) 

with the best solution reached until this iteration. This is because the algorithm is 

feasible, that is, all constraints are satisfied at any iteration. Finally, it should be 

emphasized that modern PCs are 20 times faster than the utilized workstation, 

hence computation time is not real-time critical even for large-scale sewer 

networks. 

It should be noted that the solution algorithm may reach a local minimum in the 

general nonlinear case. However, for the sewer network control problem, using 

different network topologies, different inflow scenarios, and different initial guess 

trajectories, we always encountered a highly efficient solution. Therefore, it 

appears that local minima do not present a real difficulty for the problem at hand. 

4.3.8 RPROP Algorithm 

Except for the feasible direction algorithm (Section 4.3.3), the RPROP algorithm

(Resilient Backpropagation) (Riedmiller and Braun, 1993; Riedmiller, 1994) has 

also been tested for the solution of the nonlinear optimal control problem. The 

RPROP algorithm is an adaptive technique that does not consider the value of the 

gradient g but is only dependent on the sign of its components. This algorithm does 

not calculate a search  direction  nor  does  it  solve  the  line  optimization  

problem  (steps  4  and  5, respectively, of the solution algorithm of Section 4.3.3) 

but instead it changes directly the correction d i that is used in the calculation of the 

new control variable:

u
i+1(k)=sat[ui(k)+d i(k)].                                                                     (4.44) 
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Table 4.1. Computation time needed for virtually reaching the cost function minimum.

Method Steepest

Descent

(0.2)

Fletcher-

Reeves

(240, 0.5)

Polak-

Ribiere

(240, 0.2)

  DFP 

(20, 0.5)

BFGS

(20, 0.8)

Comp.

 Time

(min)

4.7 3.3 3.3 2.8 4.3

Figure 4.2. Decreasing cost function values in dependence of the computing time. 

More precisely, the iterative RPROP algorithm has the following form:

Step 1:  Select a feasible initial control trajectory u
0(k) and an initial descent-

direction correction d 1(k), k=0,...,K–1. Set the iteration index i=0.

Step 2:  Using u
i(k), k=0,...,K–1, solve (4.10) from the initial condition (4.11)

to obtain x
i(k+1).

Step 3 : Using u
i(k), x

i(k+1), k=0,...,K–1, solve (4.16) from the terminal

condition (4.17) to obtain i(k) and calculate the gradients g
i(k) and

i(k) from (4.15) and (4.18), respectively, and Kuhn-Tucker

multipliers µ
i(k) from (4.24). [For the calculation of i(k) from

(4.18), the correction d
i 1(k) is regarded as the search direction 

p
i(k).]

Step 4:  Specify the correction d i(k), k=0,..., –1 (see below). 

Step 5:  Calculate the updated controls from (4.44). 

Step 6:  If for a given scalar >0 the inequalities
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 [ i( ), i( )] <    and µ
i(k) 0,  k=0, ...,K–1

hold, stop. Otherwise, set i=i+1 and go to step 2.

The updated values dj
i(k) are given by

0(k))g(k)(gif},|(k)|max{(k))sign(g

0(k))g(k)(gif},|(k)|min{(k))sign(g
(k)

i
j

1i
j

1i
j

i
j

i
j

1i
j

1i
j

i
ji

j

min

max

dd

dd
d  (4.45)

where 0< <1< +, and dmin and dmax are the lower and the upper limits of the

correction, respectively, which are used in order to avoid overflow/underflow

problems of floating point variables, whereas the sign operator is given by

(4.46)

else.0

0aif1

0aif1

sign(a)

The values used for the above parameters are =0.5, +=1.2, dmin=10 6, dmax=50

whereas the initial update trajectory is d 1(k)=0.1. These choices were found to 

lead to best results.

From (4.45) it can be seen that the updated correctionsd are always in the

opposite direction of the corresponding gradient components  If at some

iteration the gradient of the corresponding control changes its sign,

which indicates that the last step was too big and the algorithm has jumped over a

local minimum in the corresponding direction, then the size of the corresponding

correction step  is decreased by the factor 

(k)
i

j

jg

(k)u
i

j

(k).
i

(k)g
i

j

|(k)
1i

jd| if the gradient retains its 

sign, the size of the correction step is increased by the factor + in order to

accelerate convergence. It should be noted that the RPROP algorithm does not

guarantee a decrease of the cost function value at each iteration. 

Figure 4.3 illustrates the results obtained when applying the feasible direction

algorithm and the RPROP algorithm to the sewer network control problem that is

studied in this book. It should be noted that, in order to safely and accurately locate

the minimum when applying the RPROP procedure, an automatic switch to the

feasible direction algorithm is performed when the cost function value is not

decreased for a pre-specified number of successive iterations. It can be seen that

the RPROP algorithm reaches the minimum in less computation time than the 

feasible direction algorithm. These results indicate that the PRPOP algorithm is an 

efficient method for the numerical solution of the sewer network control problem.

However, as the analysis of the PRPOP algorithm started at a late phase of this

study, the feasible direction algorithm is used in the following sections for the

calculation of the optimal state and control trajectories.



Nonlinear Optimal Control 51

Figure 4.3. Comparison between the RPROP and the feasible direction algorithm.

4.4 Rolling Horizon

Due to the simplifications in the model of the sewer network that is used for

nonlinear optimal control and the inaccuracies of the predictions of external 

inflows, which are usually sufficiently accurate only for a relatively short future

period, the optimization should better be repeated periodically, every kR time steps, 

with updated inflow predictions and state estimates. Thus, the optimal control

problem of the sewer network is embedded in a closed-loop control structure

(referred as optimization with rolling horizon), where the numerical solution in real

time is performed as follows (Papageorgiou, 1997):

At time step k0, the nonlinear optimal control problem is solved (using the

iterative feasible direction algorithm), based on the estimated initial condition x(k0)

and on the available predictions of external inflows d(k), k=k0,…,k0+K 1, where 

K (K>>kR) is the optimization horizon, to obtain the trajectories of the controls

u*(k) and states x*(k+1), for k=k0,…,k0+K 1. However, only a part of the control

trajectory is actually applied to the process, namely u*(k), k=k0,…,k0+kR 1. Then,

at time step k0+kR, based on new estimated initial condition x(k0+kR) and updated

predictions of external inflows d(k), k=k0+kR,…,k0+kR+K 1, the optimization

problem is solved again to obtain the trajectories for u*(k) and x*(k+1) for k=k0+
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kR,…,k0+ kR+ 1 but only u*(k) for k=k0+kR,…,k0+2kR 1, is actually applied in 

real time, and so forth. 

It is important to note the following: 

Accurate inflow predictions may be available only for the first Kp time 

intervals of each optimization run, where Kp K (e.g., if no predictions are 

available, Kp=0), whereas in the (unrealistic) case of accurate and complete 

inflow information, Kp=K. Generally, the Kp value depends on the extent of 

the catchment area (e.g., in a large catchment area, the time needed for the 

water to reach the sewer network is longer, and thus inflow predictions for 

more future time intervals can be obtained) and can be increased by 

utilization of rainfall prediction methods or radars. However, as inflow 

predictions for the whole optimization horizon K Kp are needed, some 

prolongation scheme is applied for the inflows after time Kp. In the present 

study, the inflow prolongation scheme uses the values of the last three time 

intervals from a known inflow trajectory (past inflows or expected inflows 

estimated using a predictive rainfall-runoff model) to predict, using linear 

regression, the inflow values for the next 20 minutes. Then the inflows 

move towards dry weather flow values, which they reach 20 minutes later 

(Figure 4.4). 

A satisfactory optimization horizon K is given by the sum of the duration 

of the predicted inflow and the time needed for the network to be emptied 

(Papageorgiou, 1988). A much smaller optimization horizon K may lead to 

“myopic” control actions.  

For the application of the repeated optimization, the computation time 

needed for the numerical solution of the problem must be short enough to 

permit repetitive on-line solution of the optimization problem. 

The state variables x must be measurable or be estimated in real time. For 

the sewer network control problem, measurement sensors are used to 

obtain current  water  flow  or  water  level  measurements,  mainly for the 

reservoirs and possibly for some link outflows. If for some elements of the 

network real-time measurements are lacking, a state observer must be 

employed to estimate the missing measurements in real time (see Section 

5.3).  

Generally, we can say that the rolling horizon method represents a closed-loop 

structure as the control decisions are taken every kR based on measured or 

estimated states, and in this way the influence of inaccurate predictions, 

modelling inaccuracies, and diverse disturbances is reduced. 
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real inflow

prediction at    k = 0

                     k = 3

                     k = 6
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Figure 4.4. Example of inflow prediction at k = 0, 3, 6 for kR = Kp= 3. 



Chapter 5

Multivariable Feedback Control

5.1 General Problem Considerations

For the development of the linear multivariable feedback regulator, theoretically 

founded linear control theory methods, such as pole assignment or linear-quadratic 

(LQ) optimization, may be used. Application of these methods requires a number 

of problem simplifications, such as model linearization, quadratic criterion, and no 

constraints, which will be introduced in this chapter. For the sewer network flow 

control problem, application of the linear-quadratic methodology appears most 

convenient (Messmer and Papageorgiou, 1992). The linear-quadratic design 

procedure includes precise specifications on model structure, model equations, 

nominal steady-state choice, and quadratic criterion choice. These specifications 

enable system designers to come up in a short time with a linear-quadratic 

formulation of their particular sewer control problem and subsequently to proceed 

to a systematic and straightforward calculation of a multivariable feedback 

regulator based on the established linear-quadratic regulator procedures. 

As already mentioned, the linear-quadratic methodology does not allow for 

direct consideration of constraints (2.38). The control constraints, therefore, will be 

imposed heuristically after calculation of the feedback law. Clearly, this heuristic 

consideration of control constraints will potentially lead to suboptimal control 

results. The impact of this (and further) simplification(s) on the control objectives 

will be ultimately judged by simulation through comparison with the nonlinear 

optimal control results.   
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5.2 Linear-Quadratic Formulation of the Sewer

Network Control Problem

The linear-quadratic methodology is not directly applicable if there are time delays,

like those appearing in the process model (2.37). This difficulty may be readily

circumvented by introducing some auxiliary variables ix~  (Marinaki and

Papageorgiou, 1996a). Thus, for example, for a control variable uj appearing in the

model equations with time delay , one may introduce the auxiliary additional

state equations

ju

(k)u1)(kx~ j1

(k)x~1)(kx~ 12 (5.1)

…

(k)x~1)(kx~ 1ujuj -

and substitute (k)x~
uj

 in all model equations where uj(k – uj) appears.

This modification can be performed for all time-delayed control and state

variables of the process model. The auxiliary variables x~  are regarded as

additional state variables that are incorporated in the state vector x. With this

modification, (2.37) obtains the simpler form

 x(k+1) = f[x(k), u(k),d(k)]. (5.2)

To facilitate the application of linear controller design, linearization around a 

stationary nominal point is required. For the definition of this point, a nominal

rainfall is considered that leads to constant nominal external inflow values d
N such

that  = rN
nd

N
2

N
1 d...dd

max
 results in absence of any control actions (all gates

opened). Under nominal conditions no overflows occur, because we have assumed

that the sum of external inflows equals rmax. Consequently, from equation (2.32),

we obtain for each reservoir’s outflow . The nominal reservoir storages

are provided by inversion of

N
iu  =

N
i

N
iin,u

N
iV (2.32), taking u

un,i
(Vi(k)) equal to , whereas

the nominal values of the link outflows q  and of the auxiliary variables

N
iu

N
ix~  are 

readily obtained from  and  via stationary continuity considerations.

The nominal steady state just described corresponds to a steady-state form of (5.2):

N
i

N
i u,d N

ix

x  = f(xN,uN,dN).  (5.3)

Linearization of (5.2) around this steady state leads to
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x(k+1) = N
x

f
x(k) + N

u

f
u(k) + N

d

f
d(k) (5.4)

where x(k) = x(k) – x , u(k) = u(k) – u
N, and d(k) = d(k) – d

N are the

linearized variables and A = f/ x
N
, B = f/ u

N
, C = f/ d

N
 are the time-

invariant state, control, and disturbance matrices of the linearized system with

appropriate dimensions.

If d(k) vanishes, a feedback law without feedforward terms will be obtained,

and this control law will react to the manifest impact of inflows on the measurable

storages, rather than to inflow forecasts. On the other hand, if sufficiently accurate

inflow forecasts are available, it is possible to incorporate them in the problem 

formulation ( d(k) 0) and, thus, to design a control law with additional

feedforward terms to anticipate to some extent the impact of future inflows. An 

extended design procedure, that explicitly considers inflow forecasts is presented

in Sections 5.3.3 and 5.3.4.

The design of a feedback law in case where no inflow predictions are used does

not require a controllable linear model. However, the design of a feedback law that

enables direct consideration of inflow predictions requires a stationary solution P

of the Ricatti equation (see Section 5.3.4) that is available only for controllable

systems (for uncontrollable systems only a stationary gain matrix L may be

obtained). A linear system is controllable (Dorato et al., 1995) if and only if (for 

nonsingular A),

 rank[B|AB|A2
B|…|An 1

B] = n.  (5.5)

where n is the number of state variables.

To obtain a controllable linear model, the nx state variables and according state 

equations, corresponding to the nx reservoirs (2.32), are replaced by nx–1

alternative state variables and state equations. The new state variables and state

equations are obtained by building nx–1 independent differences of the old state

equations. For example, if the linearized conservation equations of reservoirs i and 

j are

Vi(k+1) = Vi(k) – ui(k) + di(k) (5.6)

Vj(k+1) = Vj(k) – uj(k) + ul(k) (5.7)

respectively, a new state equation may be obtained with new state variable

xi (k+1) =
N
jmaxj,

j

N
imaxi,

i

VV

)1(V

VV

)1(V kk
(5.8)

if (5.6) and (5.7) are divided by Vi,max–  and VN
iV j,max– , respectively, and 

subtracted from each other. Note that the modification (5.8) is applied only to the

N
jV
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reservoir state equations, whereas the other state equations (for the link outflows

and for the auxiliary variables) remain unchanged.

Of course, there are many different ways of building nx–1 independent

differences (5.8) out of nx original state equations. One way is to take the

differences of subsequent reservoirs, that is, build each new xi  from the old Vi

and Vi+1, i = 1,...,nx–1. Another possibility is to consider a fixed reference

reservoir j and to build each new xi  from the old Vj and Vi for i = 1,...,nx, i  j. 

For convenience, x will be used in the sequel of the monograph to denote the new

state variable x .

This formulation provides a suitable basis for the inclusion of inflow forecasts

in the control law because of the controllability of the corresponding linear model,

as the controllability condition (5.5) is satisfied for the new model.

A quadratic criterion that considers the control objectives mentioned in Section

3.1 has the general form

 J=
0k

( x(k)  + u(k) ) (5.9)Q
2

R
2

where =2
S S  is the quadratic norm of a vector , and Q and R are

nonnegative definite, diagonal weighting matrices. The infinite time horizon in 

(5.9) is taken in order to obtain a time-invariant feedback law (Section 5.3.4)

according to the linear-quadratic optimization theory (Papageorgiou, 1996).

Because of the definition of x(k), the first term in (5.9) penalizes relative

storage differences between reservoirs. The diagonal elements of Q corresponding

to the reservoir storages xi are set equal to 1, whereas the diagonal elements of Q

corresponding to the link outflows qi and those corresponding to the auxiliary

variables ix~  are set equal to zero. A controller designed to minimize this

criterion will automatically tend to equalize the relative storage distribution

between reservoirs. In other words, the regulator will tend to fill and to empty the

reservoirs simultaneously, thereby minimizing the overflowing of some reservoirs

while others are not sufficiently filled. This is an indirect way of achieving

overflow minimization for the sewer network.

By the choice of the weighting matrix R, that is, its diagonal elements, the

magnitude of the control reactions can be influenced. This is necessary in order to

avoid high feedback parameters that would lead to nervous control behaviour.

Moreover, it provides the possibility to consider, to a certain extent, indirectly, the

constraints (2.38), because increased values of the diagonal weighting parameters

will lead to lower deviations of outflows from their nominal values. However, as 

mentioned earlier, the strict consideration of the constraints (2.38) is not

guaranteed by the quadratic criterion and must be imposed after the feedback law

calculations, that is, the control variables must be truncated according to (2.38).

The choice of the diagonal matrix R is performed by a trial-and-error procedure so

as to achieve a satisfactory control behaviour for a given application network. In

the trial-and-error procedure we start with some plausible values for the weighting
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factors Ri and then look at the control results obtained by simulation. If these

results are not satisfactory, for example if the reservoir storages are not sufficiently 

balanced, or if some control variables ui violate constraints too often, the

corresponding parameters Ri are changed accordingly, and simulation is repeated.

It should be noted that during the trial-and-error procedure the weighting matrix Q

remains unchanged as the control results depend on the relative magnitude of the

weighting matrices Q and R and not on their absolute values.

As already mentioned, the inflow r(k) into the treatment plant should be as high

as possible in order to empty the network as quickly as possible. Therefore, r(k) is

not included in the control vector u, but is set r(k) = rmax and is truncated afterward

if necessary to satisfy (2.36). 

5.3 Multivariable Control Law

5.3.1 General Problem Formulation 

As detailed in Section 4.1, a direct way of considering the main objectives of a

sewer network flow control system is via formulation of a suitable nonlinear cost

function that is minimized taking into account the state equation and the

constraints. In this chapter an indirect, much simpler, approach is taken that leads

to a quadratic criterion to be minimized, taking into account the linearized state 

equation of Section 5.2. In the following, the general problem formulation and the

derivation of a multivariable feedback control with and without feedforward terms

is derived using the linear-quadratic optimization theory.

A quadratic cost functional in x and u reads

)(k)(k)(
2

1
(K)

2

1
J

22
1K

0k

2

RQS
uxx  (5.10)

where S 0, Q 0, and R > 0 are time-invariant, symmetric weighting matrices,

and K is the optimization time horizon defined in Section 4.1. (Matrices A, B, C,

Q, and R may be time varying without any change in the equations of Sections

5.3.1, 5.3.2 and 5.3.3, for a time-invariant solution (Section 5.3.4); however, these

matrices must be assumed constant.)

For given disturbance trajectory d(k), k = 0,...,K–1, we are looking for the

control u(k) that minimizes (5.10) subject to (5.4) with initial condition

x(0) = x0. (5.11)
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5.3.2 Necessary Optimality Conditions 

To solve the optimization problem of Section 5.3.1, the discrete-time Hamiltonian

function (4.14) is given by

 H[ x(k), u(k), (k+1), k] = ](k)(k)[
2

1 22

RQ
ux  + 

    + (k+1)T[A x(k) + u(k) + C d(k)]  (5.12)

where (k+1) Rn are the Lagrange multipliers for the corresponding equality

constraints (5.4) (Section 4.3.1). 

For the formulated discrete-time optimal control problem, the following

necessary conditions of optimality hold for k = 0,...,K–1 (notation: xy = x/ y):

x(k+1) = H (k+1) = A x(k) + B u(k) + C d(k) (5.13) 

(k) = H x(k) = Q x(k) + AT (k+1) (5.14)

( ) = S x(K) (5.15)

 H u(k) = 0 = R u(k) + BT (k+1). (5.16) 

5.3.3 Time-Variant Solution 

To find a solution of the formulated problem we start by assuming that

(k) = P(k) x(k) + z(k) (5.17) 

where P(k) is a symmetric n n matrix and z(k) is a n 1 vector; replacing (5.17) in

(5.16) we have

R u(k) + BT
P(k+1) x(k+1) + BT

z(k+1) = 0. (5.18) 

Replacing x(k+1) in (5.18) from (5.13) and solving for u(k) we have

u(k) = – [R + B
T
P(k+1)B]–1

B
T
P(k+1)A x(k)

 – [R + B
T
P(k+1)B]–1

B
T[P(k+1)C d(k) + z(k+1)].  (5.19)

Introducing the m n matrix

D(k) = [R + B
T
P(k+1)B]–1

B
T (5.20) 

the m n gain matrix
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L(k) = [R + B
T
P(k+1)B]–1

B
T
P(k+1)A (5.21) 

and the n-dimensional vector 

p(k+1) = P(k+1)C d(k) + z(k+1) (5.22) 

we obtain for the control u(k) from (5.19) 

u(k) = –L(k) x(k) – D(k)p(k+1). (5.23) 

Replacing (5.13), (5.16) and (5.17) in (5.14) we obtain 

P(k) x(k) + z(k) = Q x(k) + AT
P(k+1) [ x(k) + B u(k)]                                   

+ A
T[P(k+1)C d(k) + z(k+1)].          (5.24) 

Using (5.22) and (5.23) in (5.24) we obtain after some manipulations 

P(k) x(k) + z(k) = [Q + A
T
P(k+1)A – A

T
P(k+1)BL(k)] x(k)

                                + AT[I – P(k+1)BD(k)]p(k+1). (5.25) 

By equalizing the coefficients in (5.25) we have 

P(k) = Q + A
T
P(k+1)A – A

T
P(k+1)BL(k) (5.26) 

z(k) = AT[I – P(k+1)BD(k)]p(k+1). (5.27) 

Using (5.27) and (5.22) we obtain for the vector p(k) 

p(k) = P(k)C d(k–1) + Z(k)p(k+1) (5.28) 

where  

 Z(k) = AT[I – P(k+1)BD(k)]. (5.29) 

Finally, from the terminal condition (5.15) we have with (5.17) 

S x(K) = P(K) x(K) + z(K) (5.30) 

which is satisfied for 

P(K) = S (5.31) 

and z(K) = 0. The latter implies with (5.22) 
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p(K) = P(K)C d(K–1). (5.32) 

In summary, the time-varying solution of the linear-quadratic problem of 

Section 5.3.1 is given by the linear feedback law  

u(k) = uN – L(k) x(k) – U(k) (5.33) 

where  

U(k) = D(k)p(k+1). (5.34) 

The time-variant gain matrix L(k) and Riccati matrix P(k) may be obtained by 

backward integration of the interconnected equations (5.21) and (5.26), starting 

from the terminal condition (5.31). The vector p(k) is then calculated by backward 

integration of (5.28), starting from the terminal condition (5.32) with D(k) and 

Z(k) defined by (5.20) and (5.29), respectively, and with the known disturbance 

trajectory d(k), k = 0,...,K–1. 

It should be noted that equation (5.33) is an extended linear-quadratic control 
law that takes into account the future disturbances (i.e., the inflow predictions for 

the sewer network control problem). Thus, the second term on the right-hand side 

of (5.33) is the feedback portion of the control law, whereas the third term may be 

regarded as a feedforward term, accounting for future disturbances. Clearly, if, for 

k = 0,...,K–1, d(k) = 0, then from (5.28) and (5.32) p(k+1) = 0, leading to a 

purely feedback control law

u(k) = uN – L(k) x(k).  (5.35)

5.3.4 Time-Invariant Solution 

For most practical applications, a time-invariant solution with regard to the 

feedback terms is preferable. To obtain a time-invariant feedback solution, we 

make the following assumptions: 

The time horizon is infinite: K

The system [A, B] is controllable 

The system [A, F] is observable, where F is any matrix such that FT
F = Q.

Under these assumptions the backward integration of the Riccati matrix P(k), 

starting from any terminal condition P(K) 0, converges toward a unique 

stationary value P 0. If the controllability assumption is not satisfied, the 

interconnected equations (5.21) and (5.26) may still converge toward a stationary 

gain matrix L, but possibly not toward any stationary value for the Riccati matrix 

P. For the sewer network control problem, these assumptions hold (see Section 

5.2) and, thus, by using the terminal condition P(K)=I, the time-invariant matrices 

L and P may be obtained. 
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Given L, P, we may calculate the corresponding stationary matrices D, L, Z via 

(5.20), (5.21), (5.29), respectively, and the control law is given by  

u(k) = uN – L x(k) – U(k) (5.36) 

where the time-variant (feedforward) vector U(k) is calculated in real time from 

U(k) = Dp(k+1). (5.37) 

Clearly, for K  it is not realistic to assume availability of disturbance 

trajectories d(k) over infinite time. However, if disturbance trajectories are 

available over the period k = 0,....,Ks–1, where Ks is the prediction horizon (in the 

case of sewer network control, Ks corresponds to the horizon of the real-time 

available accurate inflow predictions Kp, taken from a predictive rainfall-runoff 

model, plus the inflow predictions obtained by the use of the prolongation scheme 

as explained in Section 4.4), then we may set d(k) = 0, k = Ks, Ks+1,.... Then, 

from (5.28) and (5.32) we have p(k) = 0, k = Ks+1, Ks+2,..., and  

p(k) = PC d(k–1) + Zp(k+1) (5.38) 

for k = 1,...,Ks. Equation (5.38) may be integrated backward (in real time) to 

provide p(k+1) and eventually U(k), k = 0,...,Ks–1, that are needed in the control 

law (5.36).  

On the other hand, the purely feedback control law is given by  

u(k) = uN – L x(k).  (5.39) 

It is important to underline that the calculation of L and P through backward 

integration of (5.21) and (5.26) until convergence, may be time consuming for 

problems with high dimension. However, this computational effort is required only 

once, off-line.

It must be stressed that the linear-quadratic optimization methodology should 

be viewed as a vehicle for deriving an efficient gain matrix L, that is, an efficient 

multivariable feedback regulator, rather than as an attempt to optimize a physically 

meaningful criterion subject to accurate modelling equations and constraints. 

Nevertheless, the careful definition of the linear-quadratic problem is expected to 

lead to good control results, but this should be assessed with simulation 

investigations before field implementation. 

A final comment concerns the real-time measurements required in the feedback 

regulator. The multivariable regulator (5.36) [or (5.39)] is a so-called state 

feedback regulator, that is, it requires availability of measurements for all state 

variables in real time. In the sewer network context, measurements are typically 

available for the reservoir storages and possibly for some link outflows, but not 

necessarily for the retarded auxiliary variables. Thus, if full real-time 

measurements are lacking, some sort of state estimator (also known as state 
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observer) may have to be developed to estimate the missing measurements in real 

time. The state estimator is a system driven by both the system input and output 

that produces as its output estimates of the system states (Anderson and Moore, 

1990). As no estimator is normally perfectly accurate, feedback laws using 

estimates rather than the real measurements of the state will only approximate the 

ideal situation. 

In summary, the application of the control law (5.36) that takes into account 

real-time measurements and inflow predictions requires the following calculations: 

(i) Off-line calculations: 

Calculation of the stationary Riccati matrix P and gain matrix L

Calculation of the matrices D and Z.

(ii) On-line calculations at each time instant k for given predictions d( ),  = 

k,...,k + Ks – 1, and given real-time measurements x(k): 

Calculation of the time-variant vector p( ),  = k + 1,...,k + Ks.

Calculation of U(k). 

Calculation of u(k).

Thus, the on-line calculation load is clearly increased compared with the purely 

feedback regulation (5.39), but is still feasible in real time, as it will be seen in the 

following section.  

5.4 Computational Effort 

The application of the multivariable feedback regulator with and without 

feedforward terms requires off-line and on-line calculations as mentioned in 

Section 5.3.4. For the particular sewer network control problem considered here, 

where matrices with high dimensions (see Section 6.4) are treated, the computation 

time needed for the off-line calculations is fairly high, but for the on-line 

calculations is quite low (few seconds), thus permitting real-time application of the 

multivariable feedback controller.  

More precisely the off-line calculation of the stationary Riccati matrix P and 

gain matrix L in a Workstation HP 700 requires a computation time on the order of 

6 hours. The off-line calculation of the matrices D and Z is effectuated in a few 

seconds, as it requires some matrix operations to be performed only once. The on-

line calculations of the time variant vectors p(k) and U(k), and the control variables 

u(k) are effectuated in few seconds, too. It should be noted that for the feedback 

regulator without feedforward terms, the computation time needed for the on-line 

calculation of (5.39) is even less, as the time-variant vectors p(k) and U(k) are not 

calculated and the control law is simpler. 



Chapter 6 

Application Example

6.1 Application Network 

To assess the efficiency of the methodologies described in Chapters 4 and 5 in 

reducing the overflows and more generally in satisfying the control objectives 

described in Section 3.1 when applied to a real sewer network, an extended 

investigation was performed for the sewer network of Obere Iller (in Bavaria, 

Germany). This network connects five neighboring cities to one treatment plant. 

The simplified model of this network is depicted in Figure 6.1. In this network, 

reservoir 7 is a storage element created by setting up a control gate for regulating 

the flow at the end of a voluminous sewer in the network without overflow 

capability. There is, however, for emergency needs a bypass of the control gate (a 

weir over the gate), so that in case of an overload, an overflow qover,7 is created that 

enters the sewer 5 through nodes 4 and 5 (Figure 6.1). 

The continuity equations of the simplified model (2.32) that correspond to the 

eleven reservoirs of the network, are given by: 

 x
1
(k+1) = x

1
(k) + T(d

1
(k) u

1
(k)  q

over,1
(k))           (6.1) 
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For the sewer outflows q1,…,q6 Equation (2.10) is used for the simplified 

model where: 

 qu,1(k) = d
2
(k 

1
) + u

1
(k 

1
)         (6.12) 

 qu,2(k) = u
2
(k 

2
)+d

4
(k 

7
) + q

1
(k 

2
)          (6.13) 

 qu,3(k) = u
5
(k 

3
)         (6.14) 

 qu,4(k) = u
6
(k 

4
) + u

3
(k 

8
) + u

4
(k 

8
) + q2(k 

8
)          (6.15) 

 qu,5(k) = u
7
(k 

5
) + u

8
(k 

9
) + d

9
(k 

5
) + u

9
(k 

9
)

                            + qover,7(k 
5
) (6.16) 

 qu,6(k) = d
12

(k 
6
) + u

10
(k 

6
) + q

5
(k 

6
).         (6.17) 

The constraints of the reservoir outflows are given by (2.34), whereas from 

(2.12), we have for this network the specific constraints: 

u1(k)  qmax,1  d2(k) (6.18) 

 u2(k)  qmax,2  q1(k)  d4(k + 2 7)           (6.19) 

 u5(k)  qmax,3 (6.20) 

 u3(k 8+ 4) + u4(k 8 +  4) + u6(k)  qmax,4  q2(k 8 + 4)            (6.21) 

 u7(k 5+ 9) + u8(k) + u9(k)  qmax,5  d9(k 5 + 9)

                                                               qover,7(k 5 + 9) (6.22)    
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Figure 6.1. Application network.
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 u10(k)  qmax,6  q5(k)  d12(k).  (6.23)

Constraints (6.18), (6.19), (6.20), and (6.23) are regarded as additional upper

bounds for the control variables u1(k), u2(k), u5(k), and u10(k), respectively.

To empirically specify the values of the time delays and the time constants in

the sewer links, the simulation program KANSIM was used. Positive and negative

step responses of the flow process were calculated for the sewers 1,…,6 by using

step inputs at various levels of flow and recording the corresponding outflow

responses provided by KANSIM. The final values for the time delay and time

constant of each sewer stretch was then taken equal to the mean value of the

corresponding parameter values over all responses. Three levels for the step inputs

were used, namely when the sewers are almost empty, half full and almost full.

In Figure 6.2 the step responses for sewer 1 are depicted to illustrate the

procedure. By imposing a linear first-order time-delay transfer function

(Papageorgiou and Messmer, 1989) we have for each step response from Figure

6.2 (in minutes):

For step input from 0.08 m  to 0.3 :/s3 /sm3

1
+ = 42, 1

+ = 14

1 = 34, 1  = 30 

For step input from 0.3 m  to 0.6 :/s3 /sm3

1
+ = 31, 1

+ = 15

1 = 27, 1  = 22 

For step input from 0.6 m  to 0.9 :/s3 /sm3

1
+ = 26, 1

+ = 18

1 = 25, 1  = 20 

where 1
+ and 1 are the time delays for positive and negative step responses,

respectively, and 1
+ and 1  are the first-order system time constants for positive

and negative step responses, respectively. Clearly both parameter values are

different for each time step due to the nonlinear dynamic behaviour of the sewer

flow process. Thus, taking the mean value of time delays (including both positive

and negative step responses) and the mean value of time constants (both positive

and negative responses) the estimated time delay is 31 minutes and the estimated

time constant is 20 minutes for sewer 1.

In this way, the time delays and the time constants for all links of the simplified

model were estimated. The obtained values of the time delays are translated into

according numbers of time steps, in order to be used in Equations (6.12) to (6.17), 

(6.19), (6.21) and (6.22), by dividing the time delays (in minutes) by the discrete

time interval T = 3 minutes. Thus the following values are obtained: 1=10, 2=16,

3=28, 4=5, 5=10, 6=9, 7=9, 8=8, 9=8.

The estimated time constants are: 1 = 1200 s, 2 = 2220 s, 3=2100 s, 4=1920s,

5=1800 s, 6=1800s .

The discrete time interval T is taken equal to 180 seconds for the control and 60

seconds for the simulation. For the linear-quadratic formulation of the present

problem, the auxiliary variables (5.1) are used to take into account the time delays
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Figure 6.2. Step responses for sewer 1. 

as mentioned in Section 5.2, and the corresponding equations are attached to the

original  state equations. Thus,  taking into  account the time delays, we have 159

state variables for the present problem (10 for the reservoirs, 6 for the link

outflows, and 143 for the auxiliary variables).

The flow capacities qmax,i of the network links may be estimated by use of the

KANSIM program to correspond to the sewer flows when water level equals the

sewer height. This, however, may be a conservative estimation for sewers with

flow under pressure (e.g., due to a full upstream reservoir), in which case the

optimal results obtained from the simplified model may be unjustifiably

constrained. Note that initially our values of qmax,i were indeed chosen

conservatively, leading in some cases to reduced performance of the optimal

control approach (Marinaki, 2002). Note, also, that the multivariable regulators do 

not face this problem as they do not consider explicitly any constraints – flow

constraints there are imposed by the real world (or the simulation program). The

(nonconservative) values of qmax,i that were finally used in this specific application 

correspond to the sewer flows when water level is smaller or equal to 1.5 times the

sewer height; these values are qmax,1 = 1.1 , q/sm3
max,2 = 1.7 , q/sm3

max,3 = 0.45 

, q/sm3
max,4 = 2.7 m , q/s3

max,5 =  4.5 , q/sm3
max,6  = 5.45 ./sm3

The maximum reservoir storages are V1,max = 1200 m3, V2,max = 400 m3, V3,max

= 685 m3, V4,max = 1485 m3, V5,max = 400 m3, V6,max = 1500 m3, V7,max = 2200 m3,

V8,max = 600 m3, V9,max = 500 m3,  V10,max = 1600 m3, V11,max = 6800 m3.
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The ground area of each reservoir is e1 = 360 m2, e2 = 167 m2, e3 = 167 m2, e4 =

360 m2, e5 = 167 m2, e6 = 361 m2,  e7 = 1158 m2, e8 = 167 m2, e9 = 167 m2, e10 = 361 

m2, e11 = 680 m2.

The orifice areas are f1= 0.235 m2 , f2 = 0.276 m2, f3 = 0.81 m2, f4 = 0.36 m2, f5 =

0.276 m2, f6 = 0.367 m2, f7 = 1 m2, f8 = 0.622 m2, f9 = 0.43 m2, f10 = 0.418 m2, f11 =

2.25 m2.

The heights of the overflow weirs of each reservoir are equal to hw,1 = 3.33 m,

hw,2 = 2.4 m, hw,3 = 4.11 m, hw,4 = 4.12 m, hw,5 = 2.4 m, hw,6 = 4.16 m, hw,7 = 1.9 m,

hw,8 = 3.6 m, hw,9 = 2.99 m, hw,10 = 4.44 m, hw,11 = 10 m.

The lengths of the overflow weirs of each reservoir are lw,1 =8.48 m, lw,2 = 4.38

m, lw,3 = 7.5 m, lw,4 = 10.5 m, lw,5 = 4.38 m, lw,6 = 10.61 m, lw,7 =3.47 m, lw,8 = 6.57

m, lw,9 = 5.47 m, lw,10 = 11.31 m, lw,11 = 14.25 m.

The minimum allowable flow for the reservoir outflows for the simplified

model of the sewer network is umin = 0, whereas the flow capacities for the

downstream sewer stretches of reservoirs 1, 2, 4, and 7 as calculated from

KANSIM (in the same way as the flow capacities for the links 1-6) are ucap,1= 0.8

, u/sm3
cap,2 = 0.76 , u/sm3

cap,4 = 1.03 , u/sm3
cap,7 = 1.62 ./sm3

The parameters that are used in the calculation of qover in (2.33) are also

estimated by use of KANSIM. The simulation program is executed for different

inflow scenarios to obtain the overflows from the network reservoirs and then the

parameters d0 are estimated so that the linear Equation (2.33) fits best the data

obtained by KANSIM: d0,1 = 0.9, d0,2 = 0.7, d0,3 = 0.95, d0,4 = 0.9, d0,5 = 0.6, d0,6 = 

0.95, d0,7 = 0.1, d0,8 = 0.95, d0,9 = 0.95, d0,10 =0.95, d0,11 = 1. 

The parameters used in the calculation of uun via (2.36) are estimated by use of 

the simulation program in the same way as the parameters d0, that is, suitable

parameters c0 are selected so that the nonlinear Equation (2.36) fits best the data

obtained from KANSIM. It should be noted that these values should not be

selected in  a conservative way for similar reasons as explained for qmax above. The

parameter values selected are c0,1 = 2.7 m , c/s0.5

/s0.5

0,2 = 2.5 , c/sm0.5

/sm0.5

0,3 = 2.4 ,

c

/sm0.5

0,4 = 3 m , c/s0.5
0,5 = 2.4 m , c/s0.5

0,6 = 2.4 m , c/s0.5
0,7 = 1.35 , c/sm0.5

0,8 = 2.0 

, c/sm0.5
0,9 = 2.4 , c/sm0.5

0,10 = 2.5 , cm 0,11 = 1.6 .

The treatment plant has flow capacity rmax = 2 . The nominal values for

the external inflows are calculated so that their sum be equal to r

/sm3

/s3

max and in

accordance with the catchment area and the population of each region to which the 

external inflow corresponds: d1
N = 0.174 , d/sm3

/s

2
N = 0.074 , d/sm3

3
N = 0.132

, d/sm3
4

N = 0.107 , d/sm3
5

N = 0.201 , dm3
6

N = 0.201 m , d/s3
7
N = 0.116 ,

d

/sm3

8
N = 0.066 m , d/s3

/s

9
N = 0.066 , d/sm3

/s

10
N = 0.182 m , d11

N = 0.364 , d/sm3
12

N

= 0.049 , dm3
13

N = 0.268 .m3

The nominal values of the reservoir outflows, of the reservoir storages and of

the link outflows are calculated from the simulation program KANSIM assuming

as external inflows the nominal values of the external inflows and keeping all gates

open. Thus, the obtained nominal values for the reservoir outflows are u1
N = 0.174

, u/sm3
2

N = 0.132 , u/sm3
3

N = 0.201 , u/sm3
4

N = 0.201 m , u/s3
5
N = 0.116 ,/sm3
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u6
N = 0.384 , u/sm3

7
N = 1.273 m , u/s3

/s

8
N = 0.066 , u/sm3

/s3

9
N = 0.182 m , u/s3

/s3

/s3

10
N = 

0.364 , u/sm3

/sm3

11
N = 2 ./sm3

The obtained nominal values for the reservoir storages are V1
N = 121 m3, V2

N = 

79 m3, V3
N = 19 m3, V4

N = 11 m3, V5
N = 48 m3, V6

N = 325 m3, V7
N = 833 m3, V8

N = 

144 m3, V9
N = 148 m3, V10

N = 377 m3, V11
N = 166 m3.

The obtained nominal values for the link outflows are q1
N = 0.248 m , q2

N = 

0.487 , q3
N = 0.116 , qm3

4
N = 1.273 , qm 5

N = 1.587 m , q6
N = 2

./sm3

The nominal values for the auxiliary variables are equal to the nominal values

of the corresponding variables that have time delays. Thus, for example, for the 

control variable u1, that enters (6.12) with time delay 1, 1 auxiliary variables are

used, each of the them having nominal value equal to the nominal value of u1.

6.2 External Inflows

Three scenarios of external inflows (Figures 6.3, 6.4, and 6.5) are used to

investigate the efficacy of the multivariable control law and the nonlinear optimal

control for the particular network under different circumstances. The first scenario

has locally inhomogeneous inflows, whereas in the second scenario we notice a 

redistribution with regard to the charge of individual reservoirs. Finally the third

scenario has locally and temporally inhomogeneous inflows. These scenarios were

created taking into account the extent of the catchment area and the population of

the region corresponding to each external inflow, as well as existing real data for 

the external inflows of reservoirs 3, 4, and 6 (rainfall data recorded in this region

between 1961 and 1980).

For the feedback controller without feedforward terms (5.10) no inflow

forecasts are required. For the feedback controller with feedforward terms (5.13) as

well as for the nonlinear optimal control, availability of accurate predictions for the

external inflows d1,...,d13 will be assumed initially in order to investigate their

behaviour under ideal conditions. Afterward, the behaviour of both methods will

be investigated in case accurate inflow predictions are available only for a part of 

the time horizon K. Of course, in a real-time environment, future inflows cannot be

exactly known, even if a predictive rainfallrunoff model is provided.

6.3 Nonlinear Optimal Control 

For the real-time nonlinear optimal control, the method of rolling horizon is used,

as was described in Section 4.4, with updated inflow predictions and updated initial

conditions. The cost criterion that will be minimized, according to Section 4.1, has

the following form:
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Figure 6.3. External inflows: Scenario 1; T = 180 seconds.



Application Example 73

Figure 6.4. External inflows: Scenario 2; T = 180 seconds.
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Figure 6.5. External inflows: Scenario 3; T = 180 seconds.
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where the last two penalty terms are used to take into account the constraints

(6.21), and (6.22), respectively, and they are not needed if these constraints are

taken into account directly (see Section 4.3.7). The weight coefficients Si and Qi

are set equal to 1.0. The other weight coefficients are

w1 = 0.1, w2= 1, w3 = 0.5,  w4 = 10–8, w5 = 0.1, w6 = 10,  w7 = 10. 

These weight values were chosen after a trial-and-error procedure, taking into

account the physical dimensions of the quantities involved and the desired priority 

established in Section 4.1. The optimization horizon was taken equal to  = 120 (=

6 h) when the nonlinear optimal control was applied to the particular sewer

network in order to estimate the weight coefficients to be used in (6.24).

When the rolling horizon concept is applied, the initial reservoir storages, the

link outflows, and all retarded variables with negative time arguments are required

to solve the mathematical optimization problem in real time. The reservoir storages
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and the link and reservoir outflows are measurable variables, and all other 

variables are estimated using the measured variables. For example, the estimation 

of the 2 retarded values of the outflow u2 to be used in (6.13), if the repetition 

period is kR=1 and the discrete time intervals of simulation and optimization are 

equal to 60 seconds and 180 seconds, respectively, is performed as follows: 

At time step k=0 the optimization is executed using, for the 2 retarded values 

of u2, the measured values of u2 for the time k=0, as these values correspond to 

a stationary condition. The next time the optimization is repeated, at time step 

k=3, the mean value of the outflows u2 obtained at the time steps k=1, k=2, and 

k=3 is calculated and replaces the value of u2( 1), whereas the other values, 

that is, u2( 2) until u2( 2), remain unchanged, and so forth.  

6.4 Linear-Quadratic Formulation 

Two multivariable controllers, one with and another without feedforward terms, 

were designed via the linear-quadratic methodology to investigate both the reactive 

and anticipatory regulator behaviour for the particular network. The controllers 

were programmed and were connected as an additional module to the simulation 

program KANSIM. For the design procedure, reservoir 7 of the particular 

application network is considered as the reference reservoir j as this reservoir is 

geographically in the centre of this sewer network. Thus we have as state variables 

xi = (Vi – Vi
N )/(Vi,max – Vi

N) – (V7 – V7
N)/(V7,max – V7

N), i=1,...,11, i 7.

Due to the existing long time delays in the particular network considered here, 

the total number of state variables (for T=180 seconds) is 159, whereas the total 

number of control and disturbance variables is 10 and 13, respectively. Thus, the 

dimensions of the matrices L, and P are 10  159 and 159  159, respectively, and 

the vectors U, p have dimensions 10 and 159, respectively. The involved on-line 

and off-line computational effort was discussed in Chapter 5. 

For a given application network, to achieve satisfactory control results, an 

appropriate weighting matrix R should be selected. By the choice of the weighting 

matrix R, composed of nonnegative diagonal elements ri, the magnitude of the 

control reactions can be influenced. This choice is made via a trial-and-error

procedure (Section 5.2). The weighting matrix Q remains unchanged and is 

selected in our problem as described in Section 5.2.  

The analysis of the regulator’s behaviour for different weighting matrices R

illustrates how this matrix affects the control results. For the particular sewer 

network control problem this analysis is performed for the three scenarios of 

external inflows presented in Section 6.2. The results show that for smaller values 

of the diagonal elements ri (e.g., ri=10 6, i=1,…,10) the second term of the 

quadratic criterion (5.9) becomes less important, leading to greater control values 

than in case of higher values of the diagonal elements ri (e.g., ri=10 2, i=1,…,10), 

where lower deviations of the control variables from their nominal values are 

observed. By the same token, the balancing of reservoir storages is stronger for 

lower values of ri than for higher values. However, for small values of ri, instability 
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problems are observed in reservoir 7 due to model mismatch between the design

model and the KANSIM simulator. (Note that the design model includes constant

time delays for the sewer links whereas the corresponding KANSIM time delays

are state-dependent as explained in Section 2.3.1.) These problems are eliminated 

when the diagonal element of matrix R corresponding to the outflow of reservoir 7

is given a value greater or equal to 0.1. A weighting matrix R consisting of

diagonal elements ri = 10 2 for i = 1,…,10, i 7, and r7 = 0.1 is finally selected to be

used for the multivariable regulator with and without feedforward terms. This

choice leads to very satisfactory relative reservoir storage equalization and to the

avoidance of any instability problems.

After the calculation of the control variables from Equations (5.36) or (5.39) for

the multivariable regulators with or without feedforward terms, respectively, a 

water level control scheme (Papageorgiou and Messmer, 1985) is used for

reservoir 7 in the control module connected to KANSIM. The control task is to

keep the water level in reservoir 7 near the value hw,7 by appropriate operation of

the control gates of the reservoirs upstream of reservoir 7 and by this way to avoid

the overloading of this storage element. To this end, a quantity (k)u~ is calculated

and is used as an upper bound for the sum of outflows of reservoirs 1, 2, 3, 4, and

6. If the sum of these outflows is greater than u~ (k), a value c, where

 c = u~ (k)/ (6.25)
6

5i1,i

i (k)u

is calculated, and each outflow u1(k), u2(k), u3(k), u4(k), and u6(k) is multiplied by

c, so that the constraint be respected. The following water level regulator is used

for the calculation of :(k)u~

(k)u~  = KR  (0.5/ D)  hw,7  ( hw,7  h7(k)) + p7(k)  d2(k)  d4(k) (6.26)

where:

KR is equal to l/4, where  is a regulation coefficient that was chosen

equal to 0.615 and l is the length of the sewer representing reservoir 7

which is equal to 1261.5 m.

h7(k) is the water level in reservoir 7 (in m).

p7(k) (in ) is the maximum between u/sm3
7(k) and ucap,7.

TD is a parameter experimentally specified (in seconds). More specifically,

TD was determined by taking constant values for d2(k), d4(k), and p7(k) and

checking the value of TD, for which h7 converges to hw,7 faster. For

example, taking the constant values d2(k) = 0.0132 , d/sm3
4(k) =

0.192 m , p/s3
7(k) = u7(k) = 0.22 , the simulation horizon equal to 8 

hours, the simulation time step equal to 60 seconds, and the control time 

step equal to 180 seconds, the results depicted in Figure 6.6 are obtained

for the particular sewer network. From Figure 6.6 it can be seen that for

T

/sm3

D=1000 seconds, h7(k) converges quite fast to hw,7 without significant



78 Optimal Real-time Control of Sewer Networks 

overshooting. This value, however, was decreased to TD = 235 seconds

during the general simulation investigations of Chapter 7 as it was found

more suitable to protect reservoir 7 from overload.

6.5 Simulation 

The simulation program KANSIM, that is based on the accurate model of the

sewer network as described in Section 2.3, is used as a basis for testing and

comparing the control performance of the multivariable feedback control versus

the nonlinear optimal control. This program is also used to simulate the no-control

case, so as to assess the achievable improvements via application of efficient

central control strategies to the particular network.

The specific simulation program simulates the underlying actions of local direct

control as well. More precisely, in this program, the flow from each control gate is 

kept, if physically feasible, close to specific reference values, that is, the ones

provided by the central control. It is assumed that this is done perfectly, that is, that

the outflow of each reservoir is equal to the corresponding predefined reference

value for the corresponding time interval, as long as there is enough water level

difference to produce a flow greater or equal to the reference value. If the water

level difference is lower than that limit, that is, if the reservoir is almost empty, the

control gate is assumed completely opened and the flow is calculated accordingly

(Section 2.4). In the no-control case,  the gates are assumed opened to 28%, 27%,

Figure 6.6. The water level of reservoir 7 for different values of TD.
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100%, 50%, and 100% of their maximum opening height for reservoirs 1, 2 to 6, 7, 

8 to 10, and 11, respectively, and the flow is calculated accordingly. The selection 

of the above percentages for the opening heights of the orifices, which have 

different geometric characteristics (Section 6.1), was performed by conducting 

many simulation runs using different percentages so as to achieve acceptable fixed-

control performance without overloading reservoir 7.  



Chapter 7 

Simulation Results

7.1 No-Control Case

The calculation of the outflows, the overflows, and the storages of the reservoirs 

for the sewer network of Obere Iller, when no control actions are taken, is 

performed using the inflow scenarios presented in Section 6.2 and the simulation 

program KANSIM. The results obtained constitute the basis for testing and 

comparing the control strategies applied in this network. The simulation results of 

the no-control case are presented in Table 7.1 and in Figures 7.1 to 7.9 and are 

briefly commented on the following discussion. 

Figures 7.1, 7.4, and 7.7 display the reservoir outflows for the three 

investigated scenarios. It should be noted that, although the gate opening of each 

reservoir is constant in time and equal for all scenarios (Section 6.5), the resulting 

outflows are time-varying because they depend on the water level in the 

corresponding reservoirs according to (2.15). Note also that negative flows in the 

figures correspond to backflow, which may appear if the downstream pressure of a 

reservoir or sewer stretch is higher than the upstream pressure. 

For scenario 1, external inflows are stronger upstream of reservoir 7 than 

downstream of reservoir 7 (Figure 6.3). Reservoirs 4, 6, 3, and 1 receive very 

strong external inflows (d6, d13, d5, d1, respectively), whereas reservoirs 10 and 9 

receive quite strong inflows (d11, d10, respectively); hence, an overflow appears 

probable for these reservoirs. Indeed, as shown in Figure 7.3 and in Table 7.1, 

reservoirs 1 to 6 and reservoir 9 overflow, whereas a small overload is created in 

reservoir 7 in the no-control case. 

For scenario 2, external inflows are stronger downstream of reservoir 7 than 

upstream of reservoir 7 (Figure 6.4). Reservoirs 10, 8, and 9 receive very strong 

external inflows (d11, d8, d10, respectively), and thus large overflows appear in these 

reservoirs (Figure 7.6, Table 7.1) when no control actions are taken. Reservoirs 1 

and 2 are also overflowing, although they do not have particularly strong external 

inflows. This is due to the opening height of the gates, which is 28% and 27% of 

the maximum opening height for reservoirs 1 and 2, respectively. However, it 

should be noted that the selection of the percentages of the opening heights of the 



82 Optimal Real-time Control of Sewer Networks 

orifices (see Section 6.5) leads to the avoidance of overloading of reservoir 7 for 

this particular scenario.  

For scenario 3, which has locally and temporally inhomogeneous inflows, 

reservoirs 10, 8, and 9 receive very strong external inflows (d11, d8, d10,

respectively), whereby the inflow peaks are at the time periods [114 minutes, 138 

minutes], [106 minutes, 130 minutes] and  [106 minutes, 130 minutes], 

respectively. Thus, these reservoirs are largely overflowing (Table 7.1, Figure 7.9) 

at the time period of the respective inflow peaks. Reservoir 2 has a small overflow 

when its inflow (d3) has a peak due to the relatively low percentage of the opening 

height of the gate.  

It should be noted that for all three scenarios of external inflows, the total 

available storage volume of the sewer network is not fully utilized in the no-control 

case. From Figures 7.2, 7.5, and 7.8, it can be seen that there are reservoirs that are 

not totally filled while others are overflowing. 

Table 7.1. Reservoir overflows and overload of reservoir 7 in [m3] for the no-control case. 

Reservoir Scenario 1 Scenario 2 Scenario 3 

1 932 541 0

2 394 72 164

3 353 0 0

4 684 0 0

5 338 0 0

6 647 0 0

8 0 471 220

9 284 1150 697

10 0 2047 966

11 0 0 0

Total 3632 4281 2047

7 96 0 0
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Figure 7.1. Scenario 1: Reservoir outflows ui(k) for the no-control case; T = 60 seconds. 
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Figure 7.2. Scenario 1: Relative reservoir storages (Vi(k)/Vi,max)100% for the no-control

case; T = 60 seconds. 



Simulation Results 85

Figure 7.3. Scenario 1: Reservoir overflows qover,i(k) for the no-control case; T = 60

seconds.



86 Optimal Real-time Control of Sewer Networks 

Figure 7.4. Scenario 2: Reservoir outflows ui(k) for the no-control case; T = 60 seconds.
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Figure 7.5. Scenario 2: Relative reservoir storages (Vi(k)/Vi,max)100% for the no-control

case; T = 60 seconds.
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Figure 7.6. Scenario 2: Reservoir overflows qover,i(k) for the no-control case; T = 60

seconds.



Simulation Results 89

Figure 7.7. Scenario 3: Reservoir outflows ui(k) for the no-control case; T = 60 seconds. 
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Figure 7.8. Scenario 3: Relative reservoir storages (Vi(k)/Vi,max)100% for the no-control

case; T = 60 seconds.
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Figure 7.9. Scenario 3: Reservoir overflows qover,i(k) for the no-control case; T = 60

seconds.
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7.2 Nonlinear Optimal Control 

7.2.1 Optimal Control Tool

The performance of the optimal control tool, that is, of the nonlinear optimal 

control approach based on the simplified model of the sewer network, is initially 

investigated for the particular sewer network control problem assuming that 

accurate predictions for the external inflows are available. The optimization 

approach, designed on the basis of the simplified model of the sewer network of 

Section 2.4, is expected to satisfy the control objectives of Section 4.1, namely, to 

provide automatically highly efficient flow control within a few minutes for any of 

the infinite number of possible combinations of inflow trajectories. In fact, for the 

scenarios of external inflows used in this monograph, the calculated optimal state 

and control trajectories demonstrate the efficiency of the optimal control approach 

to address the central sewer network control problem. Note that the results reported 

here are not quantitatively comparable to the results of Sections 7.1 (no-control), 

7.2.2, 7.2.3, and 7.3 because they reflect the calculations of the simplified model 

rather than those of the KANSIM simulator. The aim of this section is simply to 

test the adequacy of the optimal control formulation toward achieving the control 

goals for the simplified model. The relevance of the obtained controls under the 

realistic KANSIM simulator is investigated in the following sections. 

Figures 7.10 to 7.13 depict the optimal trajectories for scenario 1 of external 

inflows which result from the use of the simplified model within the optimal 

control formulation. The main observations are as follows: 

  Reservoir 7 is not overloaded. The optimization retains the water in the 

upstream reservoirs so that reservoir 7 is filled only up to 90% of its 

storage capacity (Figure 7.11). 

  The optimization manages to limit the total overflows in the network 

(Table 7.2) by limiting the total overflows from reservoirs 3, 4, and 6. As 

reservoirs 4 and 6 have the strongest external inflows, the optimization 

reduces the outflow value for reservoir 3 shortly before the inflow peaks 

arrive at reservoirs 4 and 6. As a consequence, reservoirs 4 and 6 can 

obtain high outflow values (the outflow u6 activates its upper bound) at the 

time of the inflow peaks and the overflows are minimized. 

  It should be noted that reservoirs 1 and 5 are not overflowing and reservoir 

2 is not totally filled when overflows occur in reservoirs 3, 4, and 6 due to 

the long time delays of links 1, 3, and 2, respectively (see Section 6.1). A 

different control behaviour concerning reservoirs 1, 5, and 2 would not 

help, as their outflows (at the moment of the inflow peaks in reservoirs 3, 

4, and 6) arrive at node 3 a long time later. On the other hand, the 

unavoidable overflows are fairly homogeneous in reservoirs 3, 4, and 6, 

that is, the optimal solution in fact distributes the unavoidable overflows in 

space and time as much as possible.  
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  The outflow of reservoir 11 does not reach the flow capacity of the 

treatment plant (Figure 7.10). This is due to reservoir 7, which does not 

send the upstream water downward at a sufficiently high rate as its outflow 

is restricted from umax,7(V7(k),k).  

Figures 7.14 to 7.16 depict the optimal trajectories for scenario 2 of external 

inflows. The main observations are as follows: 

  The optimization manages to completely avoid any overflows in the 

network (Table 7.2), notably from reservoirs 1, 2, and 8 to 10, which 

produced overflows in the no-control case (Table 7.1). More specifically, 

during the critical period reservoir 7 has a small outflow, thus permitting  

reservoirs 8, 9, and 10 to obtain high outflow values, and consequently 

overflows from reservoirs 8, 9, and 10 do not occur. 

  The outflow of reservoir 11 reaches the flow capacity of the treatment 

plant (Figure 7.14) as soon as possible and holds this value until the end of 

the control operation, thus leading to a quick emptying of the network. 

Figures 7.17 to 7.19 depict the optimal trajectories for scenario 3 of external 

inflows. The main observations are as follows: 

  The optimization manages to completely avoid any overflows in the 

network (Table 7.2), notably from reservoirs 2 and 8 to 10 that produced 

overflows in the no-control case (Table 7.1). The nonlinear optimal control, 

knowing about the inflow peaks that are going to arrive at reservoirs 8 and 

9 at around 106 minutes and at reservoir 10 at around 114 minutes, reduces 

the outflow of reservoir 7 earlier, at around 30 minutes, and retains a small 

outflow value for reservoir 7 for another 60 minutes; thus reservoirs 8, 9, 

and 10 can obtain high outflows and consequently no overflows arise at 

these reservoirs. 

  The outflow of reservoir 11 reaches the flow capacity of the treatment 

plant (Figure 7.17) as soon as possible. However, it does not keep this 

value fully until the end of the control operation as reservoir 7 does not 

send the upstream water downward at a sufficiently high rate (its outflow is 

restricted from umax,7(V7(k),k) during the time period [144 minutes, 192 

minutes]) and reservoirs 8 and 9 have small outflows or outflows equal to 

umin during the time period [174 minutes, 360 minutes].  

It should be noted that for all three scenarios: 

  The flow capacity is not exceeded in any sewer stretch (Figures 7.13, 7.16, 

and 7.19).  

The desired distribution of storage volume is taken into account according 

to the priority of this subgoal. Thus, during the emptying phase, there is 

free storage space for a possible rain event in every reservoir (Figures 7.11, 

7.15, and 7.18), see particularly for scenario 2 (Figure 7.15) for the time 

period [300 minutes, 360 minutes] and for scenario 3 (Figure 7.18) for the 

time period [318 minutes, 360 minutes]. 

  The term concerning abrupt changes of releases is considered to a 

satisfactory degree (Figures 7.10, 7.14, and 7.17). 
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Table 7.2. Reservoir overflows and overload of reservoir 7 in [m3] for nonlinear optimal 

control.

Reservoir Scenario 1 Scenario 2 Scenario 3 

1 0 0 0

2 0 0 0

3 392 0 0

4 529 0 0

5 0 0 0

6 381 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

Total 1302 0 0

7 0 0 0

7.2.2 Open-Loop Application 

The performance of the nonlinear optimal control approach is now investigated in 

an open-loop manner in order to examine the adequacy of the control decisions for 

the particular sewer network control problem under more realistic simulation 

conditions. The optimal control trajectories that are derived from the optimal 

control tool of Section 7.2.1 are applied as reference trajectories for the local direct 

control to the simulation program KANSIM so as to enable an initial identification 

of the potential differences between the simplified and the accurate model of the 

sewer network.    

The results obtained for the three scenarios of external inflows are summarized 

in Table 7.3, and Figures 7.20 to 7.23 depict the resulting trajectories for scenario 

3 of external inflows. The observations made here for scenario 3 apply similarly to 

the other two scenarios of external inflows. It can be seen from Figure 7.20 that the 

reservoir outflows for the open-loop application are quite similar to those of the 

nonlinear optimal control (Figure 7.17), that is, that for most time intervals the 

outflow of each reservoir is equal to the corresponding predefined reference value. 

On the other hand, the relative reservoir storages (Figure 7.21) and the reservoir 

overflows (Figure 7.22, Table 7.3) for the open-loop application differ from the 

ones of  nonlinear  optimal  control  (Figures 7.18, Table 7.2).  These  differences  
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Figure 7.10. Scenario 1: Reservoir outflows ui(k) for nonlinear optimal control; T = 180

seconds.
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Figure 7.11. Scenario 1: Relative reservoir storages (Vi(k)/Vi,max)100% for nonlinear

optimal control; T = 180 seconds. 
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Figure 7.12. Scenario 1: Reservoir overflows qover,i(k) for nonlinear optimal control for

i=1,…6; T = 180 seconds. 

Figure 7.13. Scenario 1: Link outflows qi(k) for nonlinear optimal control; T = 180 seconds.
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Figure 7.14. Scenario 2: Reservoir outflows ui(k) for nonlinear optimal control; T = 180

seconds.
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Figure 7.15. Scenario 2: Relative reservoir storages (Vi(k)/Vi,max)100% for nonlinear

optimal control; T = 180 seconds. 
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Figure 7.16. Scenario 2: Link outflows qi(k) for nonlinear optimal control; T = 180 seconds.

are due to the simplifications of the model used in the nonlinear optimal control

and to the parameters of this model of the sewer network that were empirically

estimated.

It should be noted that reservoirs 1 to 6 and 8 to 10 have equal or similar

external inflows for nonlinear optimal control and for the open-loop application,

whereas reservoirs 7 and 11 have different inflows (q4 and q6, respectively) for

some time intervals, that is, the inflow peaks occur at different time steps and have

different values. This fact, in addition to the model simplifications, leads to the

significant difference in the storage of reservoir 7 between the nonlinear optimal

control and the open-loop application, which leads to an undesirable strong

overload of this reservoir. It may be seen from Figure 7.23 that in the open-loop

application the peak of the inflow to reservoir 7 (q4) is greater and arrives earlier at

the reservoir than in the nonlinear optimal control (Figure 7.19). Thus, as the

optimal control trajectory for reservoir 7 has been calculated taking into account

different inflow values for some time steps than the ones appearing in the process,

and due to the fact that in the open-loop application no real-time measurements are

utilized to update the control trajectories, the overload of reservoir 7 cannot be

avoided.  This demonstrates the need for application of a rolling horizon procedure

that utilizes real-time measurements to update the control trajectories at specific

time periods according to Section 4.4. In fact it will be seen in Section 7.2.3, where



Simulation Results 101

Figure 7.17. Scenario 3: Reservoir outflows ui(k) for nonlinear optimal control; T 

= 180 seconds.
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Figure 7.18. Scenario 3: Relative reservoir storages (Vi(k)/Vi,max)100% for nonlinear

optimal control; T = 180 seconds. 
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Figure 7.19. Scenario 3: Link outflows qi(k) for nonlinear optimal control; T = 180 seconds.

the rolling-horizon procedure is used, that the overload of reservoir 7 is quite small or zero

for all three scenarios of external inflows.

Table 7.3. Reservoir overflows and overload of reservoir 7 in [m3] for nonlinear optimal 

control (open-loop).

Reservoir Scenario 1 Scenario 2 Scenario 3 

1 112 0 0

2 31 53 0

3 176 0 0

4 0 0 0

5 268 0 0

6 16 0 0

8 0 282 0

9 0 603 239

10 0 387 0

11 0 0 0

Total 603 1325 239

7 2712 1202 138
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Figure 7.20. Scenario 3: Reservoir outflows ui(k) for nonlinear optimal control (open-loop);

T = 60 seconds. 
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Figure 7.21. Scenario 3: Relative reservoir storages (Vi(k)/Vi,max)100% for nonlinear

optimal control (open-loop); T = 60 seconds.
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Figure 7.22. Scenario 3: Reservoir overflows qover,i(k) for nonlinear optimal control (open-

loop) for i=7,…11; T = 60 seconds.

Figure 7.23. Scenario 3: Link outflows qi(k) for nonlinear optimal control (open-loop); T =

60 seconds. 



Simulation Results 107

7.2.3 Rolling Horizon Application 

7.2.3.1 Investigated Cases 

The efficiency of the nonlinear optimal control is tested using a closed-loop control 

structure – optimization with rolling horizon (Section 4.4). [The on-line 

application of nonlinear optimal control is possible, as optimization needs a few 

minutes to reach the minimum (Section 4.3.7)]. Using the rolling horizon, the 

impact of inaccurate predictions, modelling inaccuracies and unexpected 

disturbances remains limited (Marinaki and Papageorgiou, 2001). The 

disadvantages of the open-loop application (Section 7.2.2), where no real process 

measurements are utilized, are largely eliminated when the closed-loop application 

is employed and thus the control system efficiency is significantly improved 

compared to the open-loop application.  

For the particular sewer network control problem, different repetition periods 

kR and different optimization horizons K for each optimization run are used, in 

order to investigate the impact of kR and K on the control performance. It is 

expected that the results should tend to be better for smaller values of kR (due to 

more frequent updating, which eliminates the impact of past modelling and 

prediction errors) and for greater values of K (due to less myopic control). It 

should be noted, however, that when the rolling horizon with incomplete inflow 

information is applied, the results might not always get better for greater values of 

K as the accuracy of the predictions deteriorates. The optimization is repeated 

every kR= 1, 2, 3, or 4 time instants. As the discrete time interval is T = 180 

seconds for the control and T = 60 seconds for the simulation, a repetition period of 

kR = 1 or 2 or 3 or 4 means that the optimization is repeated every k = 0, 3, 6, … or 

k = 0, 6, 12, … or k = 0, 9, 18,… or k = 0, 12, 24, …time steps of the simulation, 

respectively. The investigated optimization horizons K correspond to time horizons 

of 1 h, 2 h, 2.5 h, 3 h, 3.5 h, and 4 h. Note that in the following subsections we may 

express the time horizon K either in time units (h) or in number of time steps, 

hopefully without creating confusion. 

7.2.3.2 Rolling Horizon with Complete Inflow Information 

In this section, it is assumed that accurate inflow predictions are available for the 

whole optimization run, that is, Kp = K (Section 4.4). Although this assumption is 

rather unrealistic for the real application, it delivers an upper bound of system 

performance, which is useful for the assessment of the impact of inaccurate inflow 

predictions. The comparison between the different cases is made on the basis of 

total reservoir overflows and of the overload of reservoir 7, as the main task of the 

control system is the minimization of overflows and the avoidance of overload in 

storage elements, which do not have overflows. 

The results obtained for the three scenarios of external inflows are summarized 

in Tables 7.4 to 7.6. These tables demonstrate the following: 
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  For scenario 1, in all cases the total reservoir overflows are strongly 

reduced, compared to the results of no-control, and, in most cases, are  

smaller than the results of the open-loop application. Moreover, as kR is 

increased, the total overflows usually increase for all the optimization 

horizons, whereas as K is increased, the total overflows usually decrease 

for all repetition periods. The overload of reservoir 7 is significantly 

smaller than in the open-loop application, and, in most cases, smaller than 

in the no-control case. The most satisfactory results with respect to 

reservoir overflows and overload of reservoir 7 are taken when kR = 1 and 

K = 4 hours. However, as there are no significant deviations between the 

results, we can say that the control results for all combinations of K and kR

are very satisfactory.  

  For scenario 2, in all cases the total reservoir overflows are significantly 

reduced compared to the no-control case and are quite smaller compared to 

the open-loop application. Moreover, as kR is increased, the total overflows 

usually increase for all optimization horizons, and as K is increased, the 

total overflows usually decrease for all repetition periods. Reservoir 7 has a 

small overload in most cases (this overload is significantly smaller than the 

one in the open-loop application). Taking into account both the reservoir 

overflows and the overload of reservoir 7 and the fact that the deviations 

between the results are relatively small, we can say that for all 

combinations of K and kR, the control behaviour is very efficient. 

  For scenario 3, in all cases the total reservoir overflows are much less than 

the ones of the no-control case and of the open-loop application. The 

overload of reservoir 7 is equal to zero in all cases and, thus, it is smaller 

than in the open-loop application. Taking into account both the reservoir 

overflows and the overload of reservoir 7, we can say that for all 

combinations of K and kR the control results are very satisfactory.  

These results demonstrate the efficiency of the rolling horizon with complete 

inflow information in solving the sewer network control problem. 

The outflow, overflow, and storage trajectories of scenario 1 when kR = 1 and 

K = 2 hours are commented on the following discussion in order to analyse in more 

detail the behaviour of nonlinear optimal control when applied in a closed-loop 

control structure with complete inflow information. The resulting trajectories for 

kR = 1 and K = 2 hours are presented in Figures 7.24 to 7.26 and Table 7.16 

displays the corresponding overflow and overload values. From these results we 

can draw the following conclusions: 

  Optimal control reduces or avoids overflows from reservoirs 1 to 6 and 9 

(Table 7.16) that were overflowing in the no-control case (Tables 7.1) and 

in the open-loop application (Table 7.3). This is achieved by increasing the 

early outflows from these reservoirs in a way that exploits the flow 

capacity of the network links without strongly overloading reservoir 7 (its 

overload is decreased compared to the no-control case and to the open-loop 

application). Eventually, the reservoir outflows are changed as appropriate 

to minimize the unavoidable overflows.  
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  The inflow of the treatment plant u11= r, never reaches its flow capacity of 

2 m3/s due to the limited capacity of reservoir 7 outflow, which is fully 

utilized during 80  k  220. 

  Despite the inaccuracies of the simplified model, the optimization manages 

to deliver reasonable results that automatically and intelligently take into 

account and exploit the network structure, the long time delays in network 

links, the time-variation of the inflows, and the available reservoir capacity 

so as to lead to excellent control performance in a highly complex problem 

environment.   

Table 7.4. Scenario 1: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=K. 

1h 2h 2.5h 3h 3.5h 4h

kR=1    Overflows 658 553 532 506 503 412

             Overload  83 14 70 16 15 70

kR=2    Overflows     710 554 534 519 509 422

             Overload     70 42 37 64 14 71

kR=3    Overflows  725 543 524 549 513 474

             Overload   174 117 62 105 88 111

kR=4   Overflows   710 545 536 556 573 576

             Overload  94 101 115 125 107 102

Table 7.5. Scenario 2: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=K.

1h 2h 2.5h 3h 3.5h 4h

kR=1   Overflows 439 272 274 263 248 241

             Overload  49 32 33 25 26 26

kR=2   Overflows     484 334 281 284 277 247

             Overload     21 29 20 48 28 17

kR=3   Overflows  475 360 282 277 281 244

             Overload   49 53 12 15 29 16

kR=4 verflows   514 395 285 280 287 266

            Overload  61 92 60 20 30 53

Table 7.6. Scenario 3: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=K.

1h 2h 2.5h 3h 3.5h 4h

kR=1   Overflows 175 177 175 172 170 159

            Overload  0 0 0 0 0 0

kR=2   Overflows     176 178 176 171 171 167

             Overload     0 0 0 0 0 0

kR=3   Overflows  176 176 175 174 170 169

            Overload   0 0 0 0 0 0

kR=4   Overflows   176 176 175 171 169 167

             Overload  0 0 0 0 0 0
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Figure 7.24. Scenario 1: Reservoir outflows ui(k) for nonlinear optimal control  (closed-

loop), Kp = K, kR = 1, K = 2 hours; T = 60 seconds. 
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Figure 7.25. Scenario 1: Relative reservoir storages (Vi(k)/Vi,max)100% for nonlinear

optimal control (closed-loop), Kp = K, kR = 1, K = 2 hours; T = 60 seconds.
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Figure 7.26. Scenario 1: Reservoir overflows qover,i(k) for nonlinear optimal control (closed-

loop), Kp = K, kR = 1, K = 2 hours; T = 60 seconds.
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Figure 7.27. Percent overflow decrease and saved overflows (in m3) for different inflow

charge.

There is a general belief and expectation that the level of overflow reduction

achieved by efficient sewer network control as compared to the no-control case 

depends on the level of external inflows. More specifically, if the inflows are low,

there is no overflow occurring in the no-control case, hence there is hardly

anything to improve by control application. When external inflows are relatively

high, leading to according overflows in some reservoirs, optimal control may avoid 

or reduce the overflows via utilization of reserve capacity in other reservoirs.

Finally, if the inflows are very high, leading to generalized overflows in virtually

all reservoirs, there is little potential for improvement via network control due to

the lack of reserve capacity. In summary, highest overflow reductions are expected 

for medium-level inflows.

To investigate this issue, the closed-loop control structure with kR = 1 and K = 4

hours has been applied to scenario-1 inflows multiplied by a factor c. The

corresponding overflow results are depicted in Figure 7.27. For c  0.6 the total

overflows without control are zero, hence there is nothing to decrease. For c =

0.75, some overflow appears in the no-control case, whereas the optimal control

manages to completely avoid overflow, hence a reduction of 100% is achieved. For

c 0.8 the degree of amelioration due to optimal control is monotonically

decreasing and for c 1.2 the reduction of overflows is less than 50%. However,

the saved overflows [the total overflows in the no-control case minus the total
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overflows in the optimal control (in m3)] increase for values of c  1. These tests 

confirm the general belief mentioned in the previous paragraph. 

7.2.3.3 Rolling Horizon with Incomplete Inflow Information 

In this section, the rolling-horizon optimal control is used again, but inflow 

predictions are only available for 30 minutes (Kp = 10), 60 minutes, (Kp = 20) or 

not at all (Kp = 0). The calculation of the predictions over the horizon K, needed for 

the optimization runs, is made by the use of the prolongation scheme described in 

Section 4.4, whereby in the third case, past inflow values are used only for the 

prediction. 

The results obtained using a repetition period of kR = 1, 2, 3, or 4 and 

optimization horizons K = 2 hours, 3 hours, and 4 hours, are summarized in Tables 

7.7 to 7.15. From these tables it can be seen that optimization with rolling horizon 

leads to very reasonable and efficient control results even without accurate inflow 

predictions. Thus: 

  For scenario 1, for Kp = 20 (Table 7.7) and Kp = 10 (Table 7.10)  the 

results obtained are quite similar to the ones obtained when accurate inflow 

predictions are available for the whole optimization run (Table 7.4), 

whereas for Kp = 0 (Table 7.13) the results are clearly inferior to the ones 

of Section 7.2.3.2. For all three cases, as kR is increased, the total overflows 

usually increase for all optimization horizons, whereas as K is increased, 

the total overflows usually decrease for all repetition periods. The overload 

of reservoir 7 is in almost all cases significantly smaller than the one in the 

no-control case. Generally, for all three cases and taking into account both 

the total overflows and the overload of reservoir 7, the results are 

significantly better than the ones of the no-control case. 

  For scenario 2, for Kp = 20 (Table 7.8) and Kp = 10 (Table 7.11) the results 

obtained  are  quite  similar and in some cases slightly inferior to the ones 

obtained when accurate inflow predictions are available for the whole 

optimization run (Table 7.5), whereas for Kp = 0 (Table 7.14) the results 

slightly deteriorate compared to the ones of  Section 7.2.3.2. For  all 

combinations of K and kR, the control results are very efficient compared to 

the no-control case. 

  For scenario 3, for Kp = 20 (Table 7.9) the results obtained are quite 

similar to the ones obtained when accurate inflow predictions are available 

for the whole optimization run (Table 7.6); for Kp = 10 (Table 7.12) the 

results are quite similar in most cases (when kR = 3 and kR = 4 for all 

optimization horizons the results slightly deteriorate compared to the ones 

of Section 7.2.3.2); whereas for Kp = 0 (Table 7.15) the results are 

significantly inferior to the ones of Section 7.2.3.2. These significant 

differences between the case Kp=0 and the rolling horizon with complete 

inflow information are due to the form of this inflow scenario. As this 

scenario is temporally inhomogeneous, an underestimation or 

overestimation of the future inflow values from the prolongation scheme 

used can lead to quite significant deviations from the case of rolling 

horizon with complete inflow information. However, even these results are   
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Table 7.7. Scenario 1: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=20. 

2h 3h 4h

kR=1    Overflows 509 502 447

            Overload  35 31 8

kR=2    Overflows     511 522 459

             Overload     18 27 25

kR=3    Overflows  518 575 461

             Overload   18 65 69

kR=4    Overflows   501 556 463

             Overload  102 138 108

Table 7.8. Scenario 2: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=20. 

2h 3h 4h

kR=1   Overflows 431 350 241

            Overload  45 40 29

kR=2    Overflows     505 462 441

             Overload     40 37 22

kR=3    Overflows  480 485 491

             Overload   48 43 25

kR=4    Overflows   703 451 467

             Overload  21 59 60

Table 7.9. Scenario 3: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=20. 

2h 3h 4h

kR=1   Overflows 169 170 164

            Overload  0 0 0

kR=2    Overflows     160 172 175

             Overload     4 0 0

kR=3    Overflows  164 171 170

            Overload   0 0 0

kR=4    Overflows   168 172 173

            Overload  4 0 5

quite satisfactory as in almost all cases and for all combination of K and kR,

a significant reduction in the total reservoir overflows is observed compared 

to the no-control case. 

To analyse in more detail the behaviour of nonlinear optimal control when 

applied in a closed-loop control structure with incomplete inflow information, the 

results obtained for one specific case (for scenario 1 and for kR = 1 and K = 2 

hours) when Kp is equal to K, 20, 10, or 0, are presented in Table 7.16. These 

results are almost identical for Kp = K, 20, or 10 while a significant difference from 

the case Kp = K appears only when Kp = 0. The optimal trajectories for this latter 

case are presented in Figures 7.28 to 7.30 and are quite similar to the ones obtained 
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with complete inflow information (Figures 7.24 to 7.26). This indicates that the 

behaviour of rolling horizon with incomplete inflow information is very 

satisfactory and is quite similar to the one presented in Section 7.2.3.2 even if no 

inflow predictions are available. 

Table 7.10. Scenario 1: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=10. 

2h 3h 4h

kR=1    Overflows 522 524 471

            Overload  122 79 92

kR=2    Overflows     530 538 502

            Overload     92 75 60

kR=3    Overflows  560 580 550

            Overload   127 84 92

kR=4    Overflows   592 623 544

            Overload  88 88 106

Table 7.11. Scenario 2: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=10. 

2h 3h 4h

kR=1   Overflows 358 363 407

            Overload  10 29 27

kR=2    Overflows     425 408 410

            Overload     35 23 21

kR=3    Overflows  448 354 450

            Overload   17 21 12

kR=4    Overflows   528 536 580

            Overload  22 25 32

Table 7.12. Scenario 3: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=10. 

2h 3h 4h

kR=1    Overflows 170 171 164

             Overload  0 3 4

kR=2    Overflows     178 187 182

            Overload     10 15 10

kR=3    Overflows  215 225 240

            Overload   20 21 28

kR=4    Overflows   250 270 290

            Overload  40 34 41
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Table 7.13. Scenario 1: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=0. 

2h 3h 4h

kR=1    Overflows 1118 1005 882

            Overload  0 0 24

kR=2    Overflows     1120 932 846

            Overload     0 10 29

kR=3    Overflows  1251 1289 1204

            Overload   20 45 31

kR=4    Overflows   2436 2028 1986

             Overload  0 34 89

Table 7.14. Scenario 2: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=0. 

2h 3h 4h

kR=1    Overflows 517 516 513

            Overload  0 0 0

kR=2    Overflows     504 501 510

            Overload     0 0 0

kR=3    Overflows  556 554 565

             Overload   0 0 0

kR=4    Overflows   685 686 697

            Overload  0 0 0

Table 7.15. Scenario 3: Total reservoir overflows and overload of reservoir 7 in [m3] for 

nonlinear optimal control (closed-loop) for Kp=0. 

2h 3h 4h

kR=1    Overflows 724 730 740

            Overload 0 0 0

kR=2    Overflows     833 839 821

             Overload     0 0 0

kR=3    Overflows  847 840 851

             Overload   0 0 0

kR=4    Overflows   855 860 865

             Overload  0 0 0
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Figure 7.28. Scenario 1: Reservoir outflows ui(k) for nonlinear optimal control (closed-

loop), Kp = 0, kR = 1, K = 2 hours; T = 60 seconds. 
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Figure 7.29. Scenario 1: Relative reservoir storages (Vi(k)/Vi,max)100% for nonlinear

optimal control (closed-loop), Kp = 0, kR = 1, K = 2 hours; T = 60 seconds.
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Figure 7.30. Scenario 1: Reservoir overflows qover,i(k) for nonlinear optimal control (closed-

loop) for i=1, .., 6, Kp = 0, kR = 1, K = 2 hours; T = 60 seconds. 

Table 7.16. Scenario 1: Reservoir overflows and overload of reservoir 7 in [m3] for

nonlinear optimal control (closed-loop) for kR=1, K=2 hours.

Reservoir Kp=K Kp=20 Kp=10 Kp=0

1 108 108 108 115

2 17 17 22 119

3 163 164 65 662

4 0 0 0 0

5 265 221 221 220

6 0 0 108 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

Total 553 510 524 1116

7 14 35 122 0
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7.2.4 General Observations 

The nonlinear optimal control, designed on the basis of a simplified model of the 

sewer network, provides automatically highly efficient control results for different 

scenarios of external inflows. However, the performance of the nonlinear optimal 

control   approach   when   applied  in  an open-loop  manner  to  the  particular  

sewer   network   control  problem  was not satisfactory  (a reduction  of  total 

reservoir overflows was achieved but the overload of reservoir 7 was strongly 

increased compared to the no-control case). This behaviour is due to the 

simplifications of the model of the sewer network used in the nonlinear optimal 

control approach and to the fact that no real process measurements are utilized in 

the open-loop control strategy. When the nonlinear optimal control was embedded 

in a closed-loop control structure with updated inflow predictions and updated 

initial conditions, the control results were very satisfactory.  

In the rolling horizon, different repetition periods kR and different optimization 

horizons K for each optimization run were investigated, each time with inflow 

predictions of different accuracy levels. The results obtained were better when 

accurate inflow predictions were used, but, even with inaccurate or missing inflow 

predictions, the obtained control results are very satisfactory and in all cases 

significantly better than the ones of the no-control case. The results obtained for all 

combinations of K and kR, both with complete and incomplete inflow information, 

were very satisfactory and did not lead to myopic control behaviour. Generally, we 

can say that the results of the optimization with rolling horizon were very efficient 

and were significantly better than the ones of the no-control case even without 

inflow predictions.  

7.3 Multivariable Regulator 

7.3.1 Multivariable Regulator without Feedforward Terms 

The multivariable feedback controller is reducing overflows from the network 

indirectly, by means of homogeneous storage distribution  (Section 5.2).  It does 

not explicitly consider the control constraints, which are imposed (where 

necessary) heuristically after calculation of the feedback law or are imposed by the 

physical laws used in the simulation (e.g., link flow capacities). In addition, the 

regulator without feedforward terms merely reacts to the impact of inflows on the 

measurable storages as mentioned in Section 5.2 without the on-line use of a model 

and without any consideration  of inflow predictions. These main observations 

about the multivariable regulator’s behaviour are visible in the control results 

obtained for the three scenarios of external inflows used. Despite these 

simplifications, the obtained control and state trajectories demonstrate the 
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efficiency of the feedback controller to solve the central sewer network control 

problem. 

It should be noted that in all scenarios of external inflows and for both 

multivariable regulators (with and without feedforward terms) the relative storage 

of reservoir 7 (sr7(k) = (V7(k)/V7,max)100%) is not equalized with the relative 

storage of the other reservoirs (sri(k) = (Vi(k)/Vi,max)100% for i=1,…,11, i 7). This 

is mainly due to the fact that in this study the multivariable regulators are designed 

in order to equalize the relative storages of the reservoirs that are defined as si(k) = 

((Vi(k)  Vi
N)/(Vi,max  Vi

N))100%. Indeed, for this definition of the relative 

reservoir storage the equalization is very good; see Figure 7.33 for scenario 1. 

However, for this scenario during the period 55  k  217 the simulation cannot 

take the outflow value of reservoir 7 ordered by the controller due to the existing 

flow capacity limit of link 5, thus leading to a relative storage of reservoir 7 

(Figure 7.33), which is not perfectly equal to the storage of the other reservoirs 

during that period. [The trajectories sri(k) rather than si(k) are presented in the 

following discussion in order to enable comparison of the results of the 

multivariable  regulators with the ones of the no-control case and of the nonlinear 

optimal control.] 

Figures 7.31 to 7.34 depict the regulator results for scenario 1 of external 

inflows. The main observations are as follows: 

As already mentioned in Section 7.1, reservoirs 1-6 and reservoir 9 

overflow while a small overload is created in reservoir 7 in the no-control 

case. The multivariable regulator attempting to equalize the relative 

reservoir storages orders quite large outflows at almost all the reservoirs 

upstream of reservoir 7 (Figure 7.31) and finally succeeds in establishing a 

homogeneous distribution of most relative reservoir storages at some 100% 

of their storage capacity (Figure 7.32) during the critical period where 

overflows occur. An equalization at a higher storage level is not possible 

for reservoirs 8,…,11 because these reservoirs have small external inflows 

and hence small storages.  However, around k = 80 where most reservoirs 

upstream of reservoir 7 have their relative reservoir storages around 60%, 

the regulator closes reservoirs 8 and 10 and increases the outflows of 

reservoirs 9 and 7 (the values of u7(k) are less than the ones ordered by the 

regulator, as mentioned previously) in order to achieve an equalization of 

the relative reservoir storages of 7 to 10 at this percentage. Generally, for 

this scenario, the multivariable regulator manages to significantly reduce 

the total reservoir overflows compared to the ones of the no-control case 

and to avoid the overload of reservoir 7 (Figure 7.34, Table 7.17). 

The treatment plant is fed with quite high flows, which helps the network 

to be emptied quite soon in order to have free storage space for a possible 

future rainfall. 

Figures 7.35 to 7.37 depict the regulator results for the scenario 2 of external 

inflows. The main observations are as follows: 

The multivariable regulator manages to significantly reduce the total 

overflows in the network (Figure 7.37, Table 7.17) compared to the no-

control case. During the critical period where overflows occur, the 

regulator closes reservoir 7 in order to equalize its relative storage with that 
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of the other reservoirs (Figure 7.36), and so reservoirs 8, 9, and 10, which 

are strongly overflowing in the no-control case, can have high outflows 

which leads to a significant reduction of their overflows. 

As Figure 7.35 indicates, the treatment plant is fed with its flow capacity, 

and so the network is emptied as soon as possible in order to have free 

storage space for a possible future rainfall. 

Figures 7.38 to 7.40 depict the regulator results for the scenario 3 of external 

inflows. The main observations are as follows: 

The multivariable regulator closes reservoir 7 in the beginning of the 

control period and orders small outflow for this reservoir afterward in order 

to equalize its relative storage with that of the other reservoirs (Figure 

7.39). This permits reservoirs 8, 9, and 10 to have high outflows, which 

subsequently leads to lower overflows (Figure 7.40, Table 7.17) compared 

to those occurring in the no-control case.  

As Figure 7.38 shows, the inflow capacity of the treatment plant is fully 

used, and so there is free storage space for a possible future rainfall. 

7.3.2 Multivariable Regulator with Feedforward Terms 

The multivariable regulator with additional feedforward terms anticipates to some 

extent the impact of future inflows (Section 5.4). For the three scenarios of external 

inflows used, control results obtained by the multivariable regulator with additional 

feedforward terms are quite satisfactory. The results obtained using the 

multivariable regulator with feedforward terms are equally efficient or slightly 

superior to the control results obtained using the multivariable regulator without 

feedforward terms, depending on the particular inflow event. 

Table 7.17. Reservoir overflows and overload of reservoir 7 in [m3] for multivariable 

regulator without feedforward terms.

Reservoir Scenario 1 Scenario 2 Scenario 3 

1 95 0 0

2 194 0 0

3 643 0 0

4 0 0 0

5 220 0 0

6 5 0 0

8 0 0 14

9 0 252 511

10 0 98 0

11 0 0 0

Total 1157 350 525

7 0 0 0
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Figure 7.31. Scenario 1: Reservoir outflows ui(k) for multivariable regulator without 

feedforward terms; T = 60 seconds.
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Figure 7.32. Scenario 1: Relative reservoir storages (Vi(k)/Vi,max)100% for multivariable

regulator without  feedforward terms; T = 60 seconds.
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Figure 7.33. Scenario 1: Relative reservoir storages ((Vi(k)  Vi
N)/(Vi,max  Vi

N))100% for

multivariable regulator without feedforward terms; T  = 60 seconds.
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Figure 7.34. Scenario 1: Reservoir overflows qover,i(k) for multivariable regulator without

feedforward terms for i=1,…6; T = 60 seconds. 

7.3.2.1 Multivariable Regulator with Feedforward Terms and Accurate Inflow

Predictions

When accurate inflow predictions are assumed available for the whole prediction

horizon Ks (Section 5.4), the results of Table 7.18 and of Figures 7.41 to 7.43 for

scenario 1, of Figures 7.44 to 7.46 for scenario 2, and of Figures 7.47 to 7.49 for

scenario 3 are obtained. These results indicate that the regulator with feedforward

terms is very efficient.

For scenario 1 of external inflows the results obtained from the multivariable

regulator with and without feedforward terms are almost equivalent. The control

trajectories of multivariable regulator with feedforward terms (Figures 7.41 to

7.43) are quite similar for almost all reservoirs to the ones of the multivariable

regulator without feedforward terms (Figures 7.31 to 7.34). However, the

multivariable regulator with feedforward terms, knowing about the large inflow in

reservoir 3, gives smaller outflows for reservoirs 1 and 2, and larger overflows for

these reservoirs (Table 7.18) than the regulator without feedforward terms. By 

doing this, reservoir 3 can have larger outflow than with the regulator without

feedforward terms, and thus smaller overflow (Table 7.18).
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Figure 7.35. Scenario 2: Reservoir outflows ui(k) for multivariable regulator without 

feedforward terms; T = 60 seconds.
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Figure 7.36. Scenario 2: Relative reservoir storages (Vi(k)/Vi,max)100% for multivariable

regulator without feedforward terms; T = 60 seconds.
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Figure 7.37. Scenario 2: Reservoir overflows qover,i(k) for multivariable regulator without

feedforward terms for i=7,…11; T = 60 seconds. 

For scenario 2 of external inflows the multivariable regulator with feedforward

terms gives fewer overflows (Table 7.18) than the multivariable regulator without

feedforward terms (Table 7.17). The regulator with feedforward terms, knowing

about the large inflow peaks that are going to reach reservoirs 8, 9 and 10 at around 

1 hours, retains more water in reservoir 7 (Figure 7.45), especially during the

period 53 k 59, and thus reservoirs 9 and 10 can have greater outflows (Figure

7.44) and smaller overflows (Figure 7.46) than the ones in the regulator without

feedforward terms (Figures 7.35 to 7.37).

For scenario 3 the multivariable regulator with feedforward terms has a

behaviour analogous to scenario 2. Thus, for scenario 3 of external inflows the

multivariable regulator with feedforward terms gives fewer overflows (Table 7.18)

than the multivariable regulator without feedforward terms (Table 7.17). The

regulator with feedforward terms, knowing about the large inflow peaks that are 

going to reach reservoirs 8, 9, and 10, retains more water in reservoir 7 (Figure

7.48), especially during the period 58 k 62, and thus, reservoirs 8 and 9 can have

greater outflows (Figure 7.47) and smaller overflows (Figure 7.49) than the ones in

the regulator without feedforward terms (Figures 7.38 to 7.40).
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Figure 7.38. Scenario 3: Reservoir outflows ui(k) for multivariable regulator without 

feedforward terms; T = 60 seconds.
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Figure 7.39. Scenario 3: Relative reservoir storages (Vi(k)/Vi,max)100% for multivariable

regulator without feedforward terms; T = 60 seconds.
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Figure 7.40. Scenario 3: Reservoir overflows qover,i(k) for multivariable regulator without

feedforward terms for i=7,…11; T = 60 seconds. 

Table 7.18. Reservoir overflows and overload of reservoir 7 in [m3] for multivariable

regulator with feedforward terms.

Reservoir Scenario 1 Scenario 2 Scenario 3 

1 134 0 0

2 218 0 0

3 587 0 0

4 0 0 0

5 220 0 0

6 3 0 0

8 0 0 11

9 0 217 471

10 0 83 0

11 0 0 0

Total 1162 300 482

7 0 0 0
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Figure 7.41. Scenario 1: Reservoir outflows ui(k) for multivariable regulator with

feedforward terms; T = 60 seconds.
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Figure 7.42. Scenario 1: Relative reservoir storages (Vi(k)/Vi,max)100% for multivariable

regulator with feedforward terms; T = 60 seconds. 
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Figure 7.43. Scenario 1: Reservoir overflows qover,i(k) for multivariable regulator with

feedforward terms for i=1,…6; T = 60 seconds. 

7.3.2.2 Multivariable Regulator with Feedforward Terms and Inaccurate Inflow

Predictions

The impact of inaccurate inflow predictions on the regulator’s behaviour is also

investigated. Thus, the multivariable regulator with feedforward terms is applied

when accurate inflow predictions are available for only 30 minutes, or 60 minutes

or when there are no available predictions. The calculation of the predictions

needed for the prediction horizon Ks (Section 5.4) is made by the use of the

prolongation scheme of Section 4.4 and in the third case, past inflow values only

are used for the prediction. 

The results obtained from the multivariable regulator with feedforward terms

when inaccurate inflow predictions are used are summarized in Tables 7.19 to

7.21. From these tables it can be seen that for the multivariable regulator with 

feedforward terms when accurate inflow predictions are available for only 30

minutes or 60 minuts, the results for scenarios 1 to 3 are very similar to the ones

obtained  with  accurate   inflow prediction  for  the  whole  prediction  horizon Ks.
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Figure 7.44. Scenario 2: Reservoir outflows ui(k) for multivariable regulator with

feedforward terms; T = 60 seconds.
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Figure 7.45. Scenario 2: Relative reservoir storages (Vi(k)/Vi,max)100% for multivariable

regulator with feedforward terms; T = 60 seconds. 
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Figure 7.46. Scenario 2: Reservoir overflows qover,i(k) for multivariable regulator with

feedforward terms for i=7,…11; T = 60 seconds. 

However, when only past values are used for the prediction and, thus, an

underestimation or overestimation of the future inflow values is more likely, the

results obtained may not always be as good as the ones obtained with accurate 

inflow predictions. Thus, in the third case, the results for scenario 1 are slightly 

better than the ones with accurate inflow predictions; for scenario 2 they are 

slightly inferior to the ones with accurate inflow predictions but are quite similar to

the ones of the multivariable regulator without feedforward terms; finally, for 

scenario 3 the results are similar to the ones of the multivariable regulator with 

feedforward terms and accurate inflow predictions. These results demonstrate the 

ability of the multivariable regulator to solve the sewer network control problem

even when no accurate inflow predictions are available.
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Figure 7.47. Scenario 3: Reservoir outflows ui(k) for multivariable regulator with

feedforward terms; T = 60 seconds.
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Figure 7.48. Scenario 3: Relative reservoir storages (Vi(k)/Vi,max)100% for multivariable

regulator with feedforward terms; T = 60 seconds. 
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Figure 7.49. Scenario 3: Reservoir overflows qover,i(k) for multivariable regulator with

feedforward terms for i=1,…6; T = 60 seconds. 

Table 7.19. Scenario 1: Reservoir overflows and overload of reservoir 7 in [m3] for

multivariable regulator with feedforward terms and accurate inflow predictions for 60 

minutes, 30 minutes and 0 minutes. 

Reservoir 60min 30min 0min

1 134 134 103

2 218 218 204

3 587 586 616

4 0 0 0

5 220 222 221

6 3 3 7

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

Total 1162 1163 1151

7 0 0 0
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Table 7.20. Scenario 2: Reservoir overflows and overload of reservoir 7 in [m3] for 

multivariable regulator with feedforward terms and accurate inflow predictions for 60 

minutes, 30 minutes and 0 minutes. 

Reservoir 60 min 30 min 0 min 

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

8 0 0 0

9 217 218 246

10 83 83 98

11 0 0 0

Total 300 301 344

7 0 0 0

Table 7.21. Scenario 3: Reservoir overflows and overload of reservoir 7 in [m3] for 

multivariable regulator with feedforward terms and accurate inflow predictions for 60 

minutes, 30 minutes and 0 minutes. 

Reservoir 60 min 30 min 0 min 

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

8 11 11 11

9 471 472 473

10 0 0 0

11 0 0 0

Total 482 483 484

7 0 0 0
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7.4 Comparison Between Nonlinear Optimal Control 

and Multivariable Feedback Control 

The relative efficiency of the nonlinear optimal control using a closed-loop control 

structure (optimization with rolling horizon) and the multivariable feedback control 

with and without feedforward terms for the central sewer network control problem 

is now compared based on their respective control results.  

For scenario 1 of external inflows the rolling horizon with complete inflow 

information   (Section 7.2.3.2) gives, for all combinations of the repetition periods 

kR and the optimization horizons K, better control results than the ones of the 

multivariable regulator without feedforward terms (Section 7.3.1) and of the 

multivariable regulator with feedforward terms with accurate (Section 7.3.2.1) or 

inaccurate inflow predictions (Section 7.3.2.2). When the rolling horizon with 

incomplete inflow information (Section 7.2.3.3) is used and inflow predictions are 

only available for 30 minutes or 60 minutes, the control results are slightly superior 

to the ones of both regulators. However, when inflow predictions are not available 

at all, the optimization results are similar or slightly inferior (for some 

combinations of the repetition period kR and the optimization horizon K) to the 

ones of both regulators.  

For scenario 2 of external inflows the rolling horizon with complete inflow 

information (Section 7.2.3.2) gives, in almost all cases, better results than the 

multivariable regulator without feedforward terms (Section 7.3.1) and the 

multivariable regulator with feedforward terms with accurate (Section 7.3.2.1) or 

inaccurate inflow predictions (Section 7.3.2.2). The rolling horizon with 

incomplete inflow information (Section 7.2.3.3) gives for Kp=20 and Kp=10 equal 

or slightly inferior control results, whereas for Kp=0 it gives clearly inferior control 

results compared to the ones of the multivariable regulator without feedforward 

terms (Section 7.3.1) and of the multivariable regulator with feedforward terms 

with accurate (Section 7.3.2.1) or inaccurate inflow predictions (Section 7.3.2.2). 

This is mainly due to the fact that both regulators give larger outflow values for 

some  links (mainly for links 2 and 4) than the ones of the rolling horizon (this can 

affect the performance of  nonlinear optimal control as explained in Section 6.1).    

For scenario 3 of external inflows the rolling horizon with complete inflow 

information (Section 7.2.3.2) gives for all combinations of the repetition periods kR

and the optimization horizons K superior control results than the multivariable 

regulator without feedforward terms (Section 7.3.1) and the multivariable regulator 

with feedforward terms with accurate inflow predictions (Section 7.3.2.1) or 

inaccurate inflow predictions (Section 7.3.2.2). When the rolling horizon with 

incomplete inflow information (Section 7.2.3.3) is used and inflow predictions are 

available for 60 minutes or 30 minutes, the control results are superior to the ones 

of both regulators, but when inflow predictions are not available, the optimization 

results are quite inferior to the ones of both regulators. The reason for this latter 

case is similar to the one of scenario 2, but in this scenario more links have higher 

outflows with the multivariable regulators (links 2, 4, 5, and 6).  

These results indicate that optimization with rolling horizon and multivariable 

regulators with and without feedforward terms deliver generally a similar quality 



Simulation Results 145

of control results for the particular sewer network control problem and the 

investigated inflow scenarios [although, the lack of inflow prediction leads, in 

some cases, to a relative deterioration of the optimal control approach, particularly 

if the link flow constraints in the simplified model are selected in a conservative 

way]. Thus, taking into account that the regulator needs much lower on-line 

computational effort (Section 5.5) than nonlinear optimal control (Section 4.3.7) 

and the simplicity of the regulator’s computer code, the multivariable regulator 

may be considered as a valid alternative to the nonlinear optimal control, at least 

on the basis of the available evidence.  

7.5 Concluding Remarks 

The results obtained in the previous sections for the particular sewer network 

control problem demonstrate the efficiency of the nonlinear optimal control when 

applied in a closed-loop manner and of the multivariable regulator with and 

without feedforward terms. The nonlinear optimal control approach gave efficient 

control results for the closed-loop control structure whereas for the open-loop 

control structure the results were not satisfactory with respect to the overload of 

reservoir 7. Both regulators, with and without feedforward terms, gave satisfactory 

control results. A comparison between both approaches, the nonlinear optimal 

control and the multivariable feedback control, shows that both are applicable with 

high benefit to the sewer network control problem. Especially, the results of all 

approaches, when compared to the no-control case, demonstrate the need and 

efficiency of a central control system for sewer networks. 



Chapter 8

Conclusions and Future Research

In this monograph, a generic problem formulation for the central sewer network 

control has been presented. For the study of the sewer network control problem, 

two mathematical models, a realistic simulation model (accurate model of the 

sewer network) and a simpler control design model (simplified model of the sewer 

network) were used and described in detail. For the development of the accurate 

model of the sewer network all the processes in the different elements of the sewer 

networks were modelled using known laws of hydraulics, whereas in the simpler 

control design model several simplifications were introduced so as to keep the 

computational and design effort for control within reasonable levels. In addition, 

the simulation program KANSIM based on the accurate model of the sewer 

network was presented. 

Two methods for the central control of combined sewer networks, namely a 

nonlinear optimal control and a multivariable feedback control, were developed 

and analysed. Several improvements, modifications, and extensions were 

introduced to previously developed versions of these methods in order to increase 

their efficiency and applicability range. 

In nonlinear optimal control the main control objectives and the secondary 

operational objectives of sewer network control are considered directly, via 

formulation of a nonlinear cost function that is minimized taking into account the 

state equation and the constraints. A feasible direction algorithm, based on the 

discrete maximum principle, has been used for the solution of the nonlinear 

optimal control problem. In its present form, the algorithm has been extended to 

consider directly the state-dependent control constraints, which improves 

significantly the computational efficiency of the algorithm. The optimal control 

problem of the sewer network was embedded in a real-time closed-loop rolling 
horizon procedure with repeated optimization runs.  

For the development of the linear multivariable feedback regulator the linear-

quadratic methodology has been used. Application of the linear-quadratic design 

procedure requires a number of problem simplifications, such as model 

linearization, quadratic criterion, and no constraints, and includes precise 

specifications on model structure, model equations, nominal steady-state choice, 
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and quadratic criterion choice. Using this method, multivariable regulators with 

and without feedforward terms were developed. 

To assess the efficiency of both methodologies in satisfying the control 

objectives of a sewer network control system (whose main task is the minimization 

of overflows for any rainfall event), when applied to a real sewer network, an 

extended investigation was performed for the sewer network of Obere Iller (in 

Bavaria, Germany). This network connects five neighboring cities to one treatment 

plant. Three scenarios of external inflows were used to investigate the efficacy of 

the multivariable control law and the nonlinear optimal control for the particular 

network under a variety of circumstances, and the behaviour of the control 

methods was investigated assuming availability of both accurate and inaccurate 

inflow predictions. The simulation program KANSIM was used as a basis for 

testing and comparing the control performance of both control methods. This 

program was also used to simulate the no-control case, so as to illustrate the 

achievable improvements via application of efficient central control strategies to 

the particular network. 

The nonlinear optimal control approach (based on the simplified model of the 

sewer network) when applied to the particular sewer network control problem 

assuming availability of accurate inflow predictions provided automatically highly 

efficient flow control within few minutes. The calculated optimal state and control 

trajectories demonstrate the efficiency of the optimal control approach to address 

the central sewer network control problem. When the nonlinear optimal control 

was applied in an open-loop manner, the results were not satisfactory. This was 

due to the simplifications of the model used in the nonlinear optimal control, due to 

the parameters of this model of the sewer network that were empirically estimated, 

and finally due to the fact that in the open-loop control structure no process 

measurements were utilized. When the nonlinear optimal control was tested using a 

closed-loop control structure, the results obtained were very satisfactory. For all 

the investigated scenarios and for all the combinations of the repetition period kR

and the optimization horizon K; the results were very efficient and significantly 

better than the ones for the no-control case. When the rolling horizon optimal 

control with incomplete inflow information was used, the control results obtained 

were similar or slightly inferior to the ones obtained with the rolling horizon with 

complete inflow information but still much better than the ones of the no-control 

case.

For the multivariable regulator without feedforward terms, the obtained control 

and state trajectories demonstrate its efficiency to solve the central sewer network 

control problem. The results obtained for the investigated scenarios were very 

satisfactory and were significantly better than the ones obtained when no control 

actions were taken. The results obtained using the multivariable regulator with 

feedforward terms, when accurate inflow predictions were available, were equally 

efficient or slightly superior to the control results obtained using the multivariable 

regulator without feedforward terms, depending on the particular inflow event. The 

results obtained from the multivariable regulator with feedforward terms, when 

inaccurate inflow predictions were used, were very similar to the ones obtained 

with accurate inflow prediction for the whole prediction horizon. 
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A comparison between both control methods indicated that optimization with 

rolling horizon and multivariable regulators with and without feedforward terms 

deliver a similar quality of control results (with optimisation with rolling horizon 

giving better results especially when complete inflow information is available) for 

the particular sewer network control problem and the investigated scenarios. Thus, 

both methods can be regarded as very efficient methods for the solution of the 

sewer network control problem with the multivariable regulator having the 

advantages of much lower on-line computational effort and a much simpler 

computer code than the nonlinear optimal control. It should also be noted that both 

control methods are robust with respect to noise in measurements. 

Future research is intended to be focused on the global sewer system approach. 

More specifically an integrated approach that takes into account all parts of the 

sewer system (sewers, storage elements, treatment plants, receiving waters) will be 

considered. The combination of the control technologies, the sewer network flow 

control (applying the methods developed in this monograph), and the treatment 

technologies (which are being used in order to achieve pollutant removal to meet 

water quality goals) will be investigated in order to obtain a more efficient solution 

than the one obtained when sewer network flow control or treatment technologies 

are applied in an independent way.  
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