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Series Preface

With remarkable vision, Prof. Otto Hutzinger initiated The Handbook of Environ-
mental Chemistry in 1980 and became the founding Editor-in-Chief. At that time,

environmental chemistry was an emerging field, aiming at a complete description

of the Earth’s environment, encompassing the physical, chemical, biological, and

geological transformations of chemical substances occurring on a local as well as a

global scale. Environmental chemistry was intended to provide an account of the

impact of man’s activities on the natural environment by describing observed

changes.

While a considerable amount of knowledge has been accumulated over the last

four decades, as reflected in the more than 150 volumes of The Handbook of
Environmental Chemistry, there are still many scientific and policy challenges

ahead due to the complexity and interdisciplinary nature of the field. The series

will therefore continue to provide compilations of current knowledge. Contribu-

tions are written by leading experts with practical experience in their fields. The
Handbook of Environmental Chemistry grows with the increases in our scientific

understanding, and provides a valuable source not only for scientists but also for

environmental managers and decision-makers. Today, the series covers a broad

range of environmental topics from a chemical perspective, including methodolog-

ical advances in environmental analytical chemistry.

In recent years, there has been a growing tendency to include subject matter of

societal relevance in the broad view of environmental chemistry. Topics include

life cycle analysis, environmental management, sustainable development, and

socio-economic, legal and even political problems, among others. While these

topics are of great importance for the development and acceptance of The Hand-
book of Environmental Chemistry, the publisher and Editors-in-Chief have decided

to keep the handbook essentially a source of information on “hard sciences” with a

particular emphasis on chemistry, but also covering biology, geology, hydrology

and engineering as applied to environmental sciences.

The volumes of the series are written at an advanced level, addressing the needs

of both researchers and graduate students, as well as of people outside the field of
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“pure” chemistry, including those in industry, business, government, research

establishments, and public interest groups. It would be very satisfying to see

these volumes used as a basis for graduate courses in environmental chemistry.

With its high standards of scientific quality and clarity, The Handbook of Environ-
mental Chemistry provides a solid basis from which scientists can share their

knowledge on the different aspects of environmental problems, presenting a wide

spectrum of viewpoints and approaches.

The Handbook of Environmental Chemistry is available both in print and online

via www.springerlink.com/content/110354/. Articles are published online as soon

as they have been approved for publication. Authors, Volume Editors and

Editors-in-Chief are rewarded by the broad acceptance of The Handbook of Envi-
ronmental Chemistry by the scientific community, from whom suggestions for new

topics to the Editors-in-Chief are always very welcome.

Dami�a Barceló

Andrey G. Kostianoy

Series Editors
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Preface

The well-publicised and growing concerns about worldwide freshwater resources

for human consumption impose increasing attention and focus on the monitoring,

assessment, and protection of these resources. Indeed, information and communi-

cation technologies (ICT) are currently playing a key role in the observation of

water systems, both for what are regarded as man-made infrastructures and for

those that are regarded as being water in its natural form.

The wide context covered by ICT implies a very heterogeneous technological

framework, which involves several multidisciplinary aspects, and also

encompassing several application fields. Without seeking to be exhaustive, one

may mention the development of new observational approaches, direct sensing

techniques, sensor networking architectures, data processing and analysis methods,

and integration with large data systems. These are just a few examples of the several

thematic areas that can be individuated. In addition, such wide multidisciplinary

coverage embraces many of today’s hot topics, such as crowdsourced data collec-

tion, the internet of things (IoT), and the consequent management and analysis of

big data.

Today, ‘smart cities’ and ‘smart water networks’ are cutting-edge topics in the

technical literature concerning water systems. The practical objectives of smart

water networks (and of digitalisation in general) are essentially driven by the

demand for increased efficiency of whole systems, as a response to increased

consumption scenarios, uncertain climate change, and the relating pressure on the

higher quality portion of freshwater resources destined for human consumption.

The chapters of this book focus on new perspectives for the monitoring, assess-

ment, and control of water systems, offering an updated survey of recent advances

in tools and concepts originating from the ICT sector applied in the ‘smart water’
context. The aim of this book is to present a portrait of up-to-date observational

techniques, data processing approaches, and sensing technologies for water, giving

further particular attention to the implication of multiple data science aspects, e.g.,

data analytics, cloud computing, and machine learning.
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Within this framework, the chapter by Mounce [1] investigates the opportunities

offered by data science in the context of smart water utilities. He discusses the role

played by digitalisation for smart water networks, analysing several aspects of IoT,

artificial intelligence, cloud computing, blockchain, and other new technologies.

The chapter explores relevant issues connected with data science applications to the

water industry. The first obstacle to the adoption of digital technologies is related to

the extraction of useful information from big datasets, being that the water industry

is generally considered as ‘data-rich but information poor’. Thus, collected data are

typically underused and data analytics are still not generally perceived as valuable,

in the road map to more efficient networks based on information and knowledge.

Currently, available computing power permits the implementation of data-driven

modelling and deep learning techniques for prediction and classification purposes.

The author foresees strong possibilities offered by deep artificial neural networks,

based on their excellent unsupervised feature extraction capabilities. Big datasets

concerning water quality generated by multiparametric sensor systems are given as

an example of relatively undeveloped sectors for data analytics, offering opportu-

nities for further developments, which are discussed also in other chapters of this

book [3, 5]. Finally, the chapter provides reference and overview of case studies,

demonstrating the kind of applications that are candidates to be more commonplace

in the near future.

As pressure increases on water resources, there is a growing emphasis for water

service providers to minimise the loss from leakage. Optimal sensor placement in

water distribution systems for leak/burst detection and localisation is a well-

established and very productive research field. Its primary focus is to minimise

the cost of a proposed sensor network infrastructure while maximising the capabil-

ity to detect and localise leaks and bursts through the analysis of the collected data.

Romano [2] provides a systematic review of previous work covering relevant

articles published over the last decade aiming at rationalising the work carried

out in this field. The chapter presents a synthesis and analysis of the relevant

published works to: (1) provide insight and awareness of differing arguments,

theories, and approaches; (2) highlight their capabilities and limitations; (3) identify

the state of the art in their development. The chapter also provides insight and

awareness of differing approaches that have been proposed to tackle specific issues

encountered by researchers when developing their proposed techniques such as

model and measurement uncertainties. Trends and gaps in the current research and

future research directions are identified and discussed, and a number of consider-

ations to promote further developments in this important field of research are

presented. This comprehensive chapter can serve as a useful reference resource

for researchers and practitioners involved in sensor network design for leak/burst

detection and localisation methodologies and in the development/adoption of these

techniques.

During recent decades, the role of data as a vital resource that enhances decision-

making and which supports efficient systems operation has become evident, with a

growing number of water supply companies viewing data as a key organisational

aspect that has to be properly managed, instead of an operational side-product. At
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the same time, drinking water systems have increased in complexity and feature

smarter elements, which in turn leads to a data-richer operational environment.

Castro-Gama et al. [3] address this challenging context and the often-overlooked

factor of ensuring high data quality and preventing errors in data streams. The

chapter provides a bird’s eye view of data validation in the drinking water industry

of The Netherlands towards better data quality control policies, by providing

insights on (raw) data validation in two problem types, one of water quantity and

one of water quality. The chapter concentrates on a specific aspect of the overall

data quality control chain, which deals with faulty data detection and isolation.

Furthermore, of interest here are errors in the measurements, because sensing and

human data editing processes lead to raw data distortion in the form of, e.g., drift,

bias, precision degradation, or sensor failure. The focus lies on data validation to

determine faulty data and the identification techniques, without expanding further

on the decision-making process regarding accepting or rejecting faulty data. The

authors present the results of surveys conducted with four water companies, a

literature review on faulty data detection techniques, and then propose a data

quality control approach using simple techniques. Case study results are presented

including data validation for one water company. Best practices and issues arising

from these examples regarding data quality control by water utilities are identified,

as well as recommendations for future research and application of faulty detection

techniques in the Dutch drinking water sector.

Monitoring wastewater has always been a challenge. Wastewater systems can

vary in both size and complexity ranging from small and simple rural catchments to

large and complex urban conurbations. In the wastewater collection network,

historically, there has been a lack of permanent wastewater monitoring because

of the propensity for fouling and the complications of monitoring both gravity and

pressurised networks. In engineering and operational terms, the wastewater net-

work has also been treated as a separate entity to the wastewater treatment works,

which is, in reality, part of the same system. The wastewater treatment works tend

to be much better monitored depending upon the size of the works. However, this

monitoring has been very much based upon single system instrument-based control

systems (e.g., a dissolved oxygen control system for an activated sludge plant).

Grievson [4] presents a more holistic systematic approach, which is based upon the

philosophy of the resource factory and treating the outputs from the wastewater

treatment works as a product. The chapter looks at the different elements of the

system as a whole and looks at the philosophy of operation that a smart system

would put in place and the measurement and control needs required. The future of

both the wastewater network and the wastewater treatment works will be a much

more holistic approach bringing the network and the treatment works together and

treating it as a single system. In this way, rather than operating the wastewater

treatment system for process control with the aim of protecting the water environ-

ment, it can also be operated for resource recovery and energy efficiency with a

much wider environmental benefit. This chapter provides valuable background for

researchers and practitioners interested in smart wastewater networks (including
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opportunities and barriers) and smart wastewater treatment (including preliminary,

primary/secondary treatment and sludge and resources recovery processes).

Online monitoring of several common parameters of water quality is used in

water distribution systems, in order to ensure its safety for drinking and sanitation.

The most common parameters are free chlorine, turbidity, and pH. A water quality

event will typically result when one or more parameter values reach abnormal

levels. Detection of water quality events before customers are affected is paramount

to prevent possible public health impacts and potential regulatory action. Several

general methods have been suggested in the past for identifying and classifying

such water quality events from multiple parameters. These methods include super-

vised methods such as regression or regression trees and methods that make use of

unsupervised learning such as clustering. The chapter by Brill [5] presents and

demonstrates the utilisation of radial basis function as a tool for detection and

classification of abnormal events in water quality. The methodology is based on

calibration of a radial basis function using historical true events classified by human

experts. The aim of the process is the selection of parameters that ensure zero false-

negative events. The chapter continues to describe the main method of using radial

basis function and then compares four different kernel functions, which are used for

implementing the radial basis function. The case study part of the chapter illustrates

actual analysis of real-world data (obtained from a monitoring station located in a

large city) as well as an illustrative example (data originating from a laboratory rig).

The chapter concludes with some practical advice on how kernel functions should

be selected for this task and will be of value to practitioners implementing their own

water quality alert systems.

The first five chapters of this book show a general portrait of the many implica-

tions of data science with the water industry, in particular for what regards specific

monitoring demands and also, more in general, when dealing with big datasets of

heterogeneous parameters. The potentialities and the opportunities offered by the

information and communication technologies (ICTs) for improving the manage-

ment of water are globally recognised. However, ICT solutions are not well

exploited in developing countries and for solving this issue a partnership approach,

based on open innovation, is necessary. Mvulirwenande and Wehn [6] show how

ICT-focused water innovation partnerships (ICT-WIPs) can play a relevant role in

building the capabilities of developing countries to implement smart water systems.

In particular, this study demonstrates that ICT-WIPs allow a variety of stakeholders

in the water sector (such as municipalities, ministries, large utilities, and regulatory

agencies) to work together and increase the awareness about the potential of smart

water systems. At the same time, the innovation partnership approach promotes the

culture of mutual learning, thus allowing partners to strengthen each other’s
innovation competences relating to smart water systems in developing countries.

This is particularly true when, as in the case of the ICT-WIPs analysed in this study,

partners from foreign countries need the knowledge and experience of local part-

ners (e.g., about specific problems concerning the water systems, existing solutions

and their weaknesses, possible additional local risks). Finally, the nature of the ICT-

focused water innovations analysed in this study leads to the insight that fostering
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smart water systems in developing countries requires to rethink not only the

technologies themselves but also the business models around them.

In times of IoT and ‘social sensing’, also the observation of hydrological

contexts may take benefit from low cost and ‘pervasive’ sensing systems, opening

the possibility to novel approaches for capturing relevant information. In this frame,

one of the main issues to solve is the availability of heterogeneous and intermittent

observations. The chapter by Mazzoleni et al. [7] describes novel methods for

optimally assimilating such observations into hydrological models, focusing on

the particular application of flood prediction. The aim of this chapter is to explore

numerical approaches for integrating crowdsourced observations from static social

sensors within hydrological and hydrodynamic modelling framework to improve

flood prediction. The distinctive characteristic of such heterogeneous observations

is their varying lifespan and their spatial distribution, which make more complex

the implementation of standard model updating techniques. This chapter applies

different innovative assimilation techniques within two case studies, where syn-

thetic flow observations are generated to represent the different intermittency and

accuracy scenarios of the crowdsourced observations. It was found that

crowdsourced observations can significantly improve flood prediction if integrated

into hydrological and hydraulic models. Moreover, a network of low-cost static

social sensors can actually complement traditional networks of static physical

sensors, for the purpose of improving flood forecasting accuracy.

Precipitation is a key hydrological process in the water cycle, whose observation

is increasingly required for modern water and environmental management. Con-

ventional precipitation measurements by rain gauges cannot provide sufficient

spatial and temporal coverage for many hydrological applications, such as urban

drainage system modelling. Weather radar is a remote sensing instrument that has

been increasingly used to estimate precipitation for a variety of hydrological and

meteorological applications, including real-time flood forecasting, severe weather

monitoring and warning, and short-term precipitation forecasting. Weather radar

provides unique observations of precipitating systems at fine spatial and temporal

resolutions. The potential benefit of using radar rainfall in hydrology is huge, but

practical hydrological applications of weather radar have been limited by the

inherent uncertainties and errors in radar rainfall estimates. Uncertainties in radar

rainfall estimates can lead to large errors in their applications, so radar rainfall

measurements must be corrected before the data are used quantitatively. Nanding

and Rico-Ramirez [8] have introduced the latest advances in the measurement and

forecasting of precipitation with weather radar. The common uncertainty sources

include radar hardware calibration, echoes due to non-meteorological origin, atten-

uation, variations in the vertical profile of reflectivity, and variations of raindrop

size distribution. The techniques for adjusting radar rainfall with rain gauge mea-

surements are described. Precipitation forecasting (called ‘nowcasting’) using

weather radar is valuable in its applications in real-time flood forecasting.

Accurate soil moisture information is critically important for hydrological

applications such as water resources management and hydrological modelling.

This is because soil moisture is an important element in the ecosystem and
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hydrological cycle, regulating evapotranspiration, precipitation infiltration, and

overland flow. In contrast with in situ instruments, modern satellite remote sensing

has shown a huge potential for providing soil moisture measurements at a large

scale. However, its effective utilisation in the practical projects still needs compre-

hensive research. Zhuo [9] has introduced the advances and potential issues in the

current application of satellite soil moisture observations in hydrological model-

ling. The key issues include soil moisture measuring methods, hydrological eval-

uation of satellite soil moisture, error distribution modelling of soil moisture

measurements, and the need for new hydrological soil moisture product develop-

ment. It has been found that hydrological application of soil moisture data requires

the data relevant to hydrology. In order to meet the requirement, two important

research tasks are needed: the first is to carry out comprehensive assessments of

satellite soil moisture observations for hydrological modelling, not merely based on

evaluations against point-based in situ measurements; the second is that a soil

moisture product (e.g., soil moisture deficit) directly applicable to hydrological

modelling should be developed. Only fully accomplishing these two steps will push

forward the utilisation of satellite soil moisture in hydrological modelling to a

greater extent.

There is an increasing demand for automatic chemometric solutions for water

quality monitoring, the main requirements being their autonomous operation, low

cost, and low maintenance. Today, there is a range of optical sensor technologies

that are capable to perform most analytical tasks and are characterised by full solid-

state, no need for reagents, and capability to withstand harsh working conditions, as

it is needed when the measurement points are outside protected monitoring loca-

tions (e.g., treatment plants) and relevant parameters have to be acquired directly in

the external environment. van den Broeke and Koster [10] introduce a selection of

optical sensing technologies, which can provide valuable information on the quality

of water. The measurement techniques that they describe are suitable for process

monitoring and control applications, as well as for early-warning systems. The

chapter explores the basic principles of radiative transfer at the foundation of

spectroscopic methods and the fundamentals of the signal processing for the

extraction of chemical information from the acquired signals. The survey of sensing

methods covers the absorption spectrometry in the UV/Vis spectral region, illus-

trating both selective measurements of specific substances (e.g., BTEX, nitrate, and

nitrite) and more generic features, like the colour, the amount of total suspended

solids, and the ‘sum organic parameters’, which are recognised as excellent overall

water quality indicators. The chapter also covers basic aspects and applications of

fluorescence spectroscopy and infrared spectroscopy in the NIR (near-infrared)

domain. Further methods, which are considered as promising and are also already

marketable, are described in this survey: Raman and laser-induced breakdown

spectroscopy, refractive index measurements, and image analysis. Despite the

fact that optical methods are based on mature technologies that have a solid

physical background, they are still not much used by the industry and still have a

big potential to deliver. Optically based methods are very attractive candidates to

perform automatic online field measurements, both for selective parameters, i.e., in
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a way equivalent to traditional analytical methods, and for overall water quality

assessments, i.e., for change-detection and early warning purposes.

In addition to the online measurement of chemical parameters, the monitoring of

possible organic threats to the quality of water is also of utmost importance, and

technologies for the direct sensing of such contaminants based on biosensing

techniques are currently under development. Della Ventura et al. [11] describe a

very attractive sensing technique for the in situ monitoring of organic contaminants

based on quartz crystal microbalance (QCM) devices. The chapter introduces the

basic theory of QCMs, the detection scheme and its practical embodiment (the

electronic interface and signal analysis) for an appropriate extraction of the needed

information. The peculiarity of the proposed approach consists in the

functionalisation of the QCM gold surface, obtained by immobilising a ‘recognition

layer’ of antibodies on the surface of the crystal, which is the key aspect for the

sensitivity and specificity of QCM-based immunosensors. The chapter, after intro-

ducing the theory and modelling of the QCM working mechanism, analyses the

response of a quartz crystal resonator in contact with a liquid sample. Finally, the

surface functionalisation and the detection scheme are discussed, with regard to

particular bacteriological contaminants like Escherichia coli and pesticides like

parathion. This promising sensing approach offers very high selectivity, real-time

measurement capability, and high sensitivity, thanks to the fact that a QCM is

capable of measuring mass changes as small as a fraction of a monolayer of atoms,

as the authors report.

This book is intended for a wide audience of readers, such as postgraduates,

researchers, and stakeholders at various levels. It is also intended for those experts

who want to widen their purview to adjacent fields of expertise and do not

necessarily have an ICT or hydroinformatics background.

Without aiming to be exhaustive, the present volume seeks to be a selective

survey of novel measurement technologies and data analysis approaches for water

systems.

Chapters of this book have been peer-reviewed by two reviewers per chapter. In

some cases, more than one review round was needed. Reviewers have been selected

partly internal and partly external to the book project. The editors are very indebted

to the reviewers for their excellent and thorough contribution to the overall quality

of the book.

Here we acknowledge the reviewers external to the book project:

• Romeo Bernini (CNR-IREA, Italy)

• Alessandro Nottola (Technoprobe S.p.A., Italy)

• Dleen Al-Shrafany (Salahaddin University, Iraq)

• Andreja Jonoski (IHE Delft Institute for Water Education, Netherlands)

• Antonio Annis (University for Foreigners of Perugia, Italy)

• Henrik Madsen (Danish Hydraulic Institute, Denmark)

• Qiang Dai (Nanjing Normal University, China)

• Peter van Thienen (KWR Water Research Institute, Netherlands)

• Ina Vertommen (KWR Water Research Institute, Netherlands)
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• John Machell (University of Sheffield, UK)

• Franco Dinelli (CNR-INO, Italy)

In addition, we are grateful to Prof. Andrey Kostianoy (co-editor-in-chief of the

book series) for having supported this project, and all the editorial staff within

Springer, who have always been available and supportive at all times.

Finally, our sincere thanks go to the contributors of this volume, who have

always shown a great level of engagement since the beginning of the book project.

Pisa, Italy Andrea Scozzari

Sheffield, UK Steve Mounce

Bristol, UK Dawei Han

Napoli, Italy Francesco Soldovieri

Delft, The Netherlands Dimitri Solomatine
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Abstract We are witnessing an industry change which is transitioning to a more
intelligent (or smarter) water network. In the UK a 5-year planning period
and investment cycle called the Asset Management Plan (AMP) is the regulatory
mechanism. This process is used to manage a water utility’s infrastructure and
other assets to deliver an agreed standard of service. The challenge of AMP
6 and 7 (to 2025) and beyond is to maximise efficiency by moving from reactive
to proactive management. This can be achieved by using data, information and
(where possible) control of the system. The more intelligence that is captured,
the more that can be learned and understood about the network and subsequently
be predicted. Extra data provides new opportunities for asset maintenance and
event analytics. Data science is an emerging discipline which combines analysis,
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programming and business knowledge and uses new and advanced techniques
and technologies to work with complex data. The water sector needs to address
the issue of ‘big data’ and obtaining ‘signal from the noise’. Primarily, the focus is
on data to action by the application of data science.

The role of digitalisation for smart water networks is covered in this chapter,
exploring issues of IoT, artificial intelligence, blockchain and other novel
technologies. Reference to case studies demonstrates the type of applications
which will become increasingly common place. Some recommendations based
on future possibilities and opportunities are proposed.

Keywords Blockchain, Data science, IoT, Machine learning, Smart networks

1 Introduction

Population growth, urbanisation, industrialisation and climate change are placing
increasing pressure on water resources. The water-energy nexus is a term being
used to describe the complex linkages and dependencies among water, energy
and food security, and this is of vital importance for the twenty-first century.
At the current pace of growth and consumption, water scarcity has the potential
to grind food and energy supply chains to a halt impacting on economic growth.
A paradigm shift in water industry systems is required, by considering water
and waste treatment holistically across all sectors using flexible and responsive
processes to meet rapidly changing global challenges, minimising the impact on
the environment, and not compromising on public health and quality standards.
The importance of such a transition to a circular water industry by 2050 is becoming
increasingly apparent [1].

This chapter will focus on the UK water sector and thus form the context for
discussion of relevant technologies. Over time, water supply networks have evolved
into extremely large (over 300,000 km of each of supply and sewerage pipes in
the UK), complex, interconnected systems of pipes, storage reservoirs, pumps,
valves and other assets that are required to hold and deliver enough water
to meet all the drinking, hygiene, washing, gardening and recreational requirements
of modern society as well as much of the industrial demands and for disposal of
wastewater as well as surface drainage. Operation and control of water networks [2]
is the responsibility of water service providers (WSP) who are continually
challenged to be ever more efficient and to improve year-on-year as demanded
by regulators and investors. In the UK, over £90 billion has been invested
in upgrading water industry assets since privatisation in 1989, and there is now
a shift in focus to the aspiration for intelligent and proactively managed water
networks. In 2018 it was announced that over £50 billion would be invested
over the next 5 years, increasing spending 13% above current levels.
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1.1 Data Rich Information Poor: Fixing the DRIP

The water industry has often been perceived as being ‘data rich but information
poor (DRIP)’ – see Fig. 1. Knowledge comes from understanding the information
about a subject and then using it to make decisions, form judgments/opinions
or make predictions. Data is the basis for acquiring information, and information
is the basis for further deriving knowledge. Water utilities are actually really
interested in information and knowledge, not raw data. DRIP relates to the lack
of interpretation of data that is generated by instrumentation deployed in the
highly complex systems. The DRIP needs to be fixed for the ageing infrastructure
of water networks to make them resilient to the combined and interacting challenges
of climate change, population growth, urbanisation and energy costs.

These gaps have partly to do with the necessarily conservative nature of the
sector, and with the economic drivers affecting the water industry, and reflect
the demands of its regulators and consumers. One of the most significant barriers
to adoption of digital technologies in the water sector is the relative perceived lack
of value; even though water is an essential element of life, oil or gas is more
‘valuable’ in the marketplace in economic terms (yet there are few industries
as critical to humans as water).

WSPs are struggling to archive data or to transform the data effectively into
knowledge with which to enable operational control. It has been estimated that
water utilities in the UK only use 10% of the data they collect [3]. Accurate recent
figures are difficult to obtain, but evidently the amount of data being collected
has exploded in the last decade, and its usage has not kept pace. The quality of
this data is not only variable from one water utility to the next; it is also very variable
depending on the nature of the data and the purpose for which it is being collected.
It has traditionally been difficult to justify efforts to improve data quality in
the water industry because, although seen as of interest, investment in asset
improvements takes priority. It is challenging to put a price on the value of improved

Fig. 1 Fixing the DRIP
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data quality and/or increased data collection and even online instrumentation.
However, regulation in the UK is encouraging this with companies in the future
seeking a basis for their asset planning with the analysis of data from, or directly
related to, their operations. Where good quality data is available, accessible and
well maintained, the ability of the distribution engineer to monitor, evaluate
and make good decisions with regard to the operation and maintenance of the
network is greatly enhanced. However this is rare, and there is a need to aid the
decision-making process to make the best possible use of the data that is available.

Datasets currently maintained by water companies include historic and updated
asset records, discrete water quality sampling and associated laboratory analysis
and continuous/online (typically hydraulic only) data collection from an ever
increasing telemetry footprint. Companies also keep records of customer contacts
of various types (such as complaints about leakage or water discoloration); however
such data is very variable in nature and information richness as it depends on
non-standardised customer behaviour. Good procedures for formatting and using
that data should then be implemented by WSPs. In order, the key data used in the UK
to inform decision-making processes are hydraulic meter data, customer contacts,
water quality sample data and analysis and network data such as asset records,
burst records and pipe samples. Currently interventions are often responsive to
customer contacts leading to a reactive management that does not necessarily
deal with the underlying issues. An interim position currently exists, where water
companies have substantial databases but lack the connectivity and deployed
methods to extract the full potential benefit. There is a wealth of data at works/
reservoir outlets but currently less intelligence on what is happening in the
distribution network. Customers should not be acting as ‘surrogate telemetry points’,
which is often the case (e.g. to help with leakage detection or water quality issues).
Monitoring and control systems play a role in the daily operation and maintenance
of water supply and sewerage facilities.

One of the main issues in the water industry is the lack of linking together of
data as required for identifying/solving problems occurring at system interfaces.
Current practice is for the collection and maintenance of data in disparate corporate
systems, severely limiting the potential for deeper understanding. Utility databases
containing data in an unprocessed format do not lend themselves to analysis to
establish relationships or trends. The databases are generally on separate platforms,
in differing formats, with non-uniform IDs and contain many unpopulated or
utility-specific fields. Often there has been too much focus on technology and
IT infrastructure and not enough on improving data quality and data integration
and making best use of existing corporate data resources. An example of this has
been the UK water industry gradual move to enterprise resource planning solutions
(with platforms such as SAP and MAXIMO) whereby all of the water utilities’
business information is coordinated into a single environment and similarly to
enterprise infrastructure for management of real-time data and events (platforms
such as OSI-PI). Large implementations of these platforms can take (many) years
for large companies, and customisation to allow practical use can substantially
increase implementation times [4]. Hence, many legacy systems are not yet migrated
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to such new systems. And when data is migrated to such systems, integration
and techniques to derive information are at often overlooked. Better use of data
needs to be made by bringing datasets together, particularly in the development
and use of metadata models. Essentially, data that is in many silos needs to be
located and pulled together and (sometimes) missing data accounted for before
sophisticated analysis can be achieved. Most large utilities today have an EAM
(enterprise asset management) or CMMS (computerised maintenance management
system) in place for network operational processes. In the future, utilities will
be able to move beyond time-based to condition-based maintenance, so by adopting
the ability to understand the effective age of their assets and then forecasting
potential failures, they will be able to identify and schedule improvements in life
extension maintenance activities as well as strategically plan for their replacement
in their long-term asset plan.

With advances in data manipulation (such as the use of metadata and
format interoperability) and analysis systems, in particular the integration of GIS
information with data mining methodologies, it is now possible to explore
relationships between data in increasingly sophisticated ways. If data is available,
is of good enough quality and can be linked and associated with other data, it can,
in principle, be used for a multitude of applications such as business analytics,
problem ‘hotspot’ mapping, operational assessment and investment modelling.

1.2 Big Data and Analytics Opportunities

The availability and affordability of varying forms of sensing, smart systems, data
storage and transmission technology means water utilities are becoming able to
collect more data than ever before. This information revolution era opens up hereto
unseen possibilities in the creation of tools for future engineering application. Water
utility databases are currently growing rapidly and will continue to do so. Globally,
IBM [5] estimates that 2.5 quintillion bytes of data per day are being collected.
In fact, more than 50% of the world’s data was created last year, but less than 0.5%
was analysed or used. Experts predict that 40 zettabytes of data will be in existence
by 2020. Collecting more data doesn’t necessarily result in better information or
knowledge. But, substantial datasets do offer a potential way to tackle traditional
issues via development and application of novel data-driven analysis. Big data
has been compared to being like an iceberg where most of the value to be unlocked
is still hidden under the surface.

Machine learning (ML) relates with the study, design and development of the
algorithms that give computers the capability to learn without being explicitly
programmed. Problems usually need describing in features to use ML. Machine
learning and big data can be used to ‘learn’ how the system operates and reacts to
events. The combination of big data and machine learning will eventually result
in a breakthrough in the integration and analysis of heterogeneous data types as
is already occurring in other more developed industries. Big data analytics lies at
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the heart of the ability to derive actionable value from an array of structured and
increasingly unstructured, text based or sensory data and execute or automate the
next best action based on predictive and prescriptive data science.

The current nature of water utility network data is that it remains sparse
(e.g. not all locations are sampled) and typically is not linked across functions
(e.g. water quality data is not linked to hydraulic model data). Maximising
the quality of data (its usefulness) requires consideration of a chain of processes
and manipulation, e.g. data source, collection, storage and the anticipated data
end use. Machine learning or data-driven analyses, which map inputs to outputs
without attempting to accurately model underlying processes, can potentially yield
useful understanding, such as determination of dominant variables and empirical
relationships, and therefore have been used for many different environmental
and water quality applications. The required blend of foresight and experience
means a move towards ‘big data’ solutions, and so-called business intelligence
(turning an organisation’s data into patterns that help make intelligent business
decisions) in water utilities must be somewhat iterative and will require significant
development time. In the future, engineers will access data, tools and analysis in real
time and collaborate on diagnostic decisions relating to the condition of a remote
monitored asset. This could enable network engineering decisions to be increasingly
evidence-based with associated provenance to allow the reasoning behind decisions
to be evaluated for compliance with statutory regulation and to create a knowledge
repository to form a basis for future decisions. In an industry where customer
perception of service (and statutory obligations) is dependent on very complex,
distributed, non-linear dynamical water networks with a consequent high degree
of uncertainty, such knowledge-based engineering represents a key advantage
in commercial terms (i.e. company efficiency) and in the ability to serve the wider
society.

A vision for this integrated future is illustrated in Fig. 2. At the rate at which
data and our ability to analyse it are growing in society in general, it is reasonable
to expect that most UK companies will be using the impact of big data analytics
in the next 5 years [6]. It should however be noted that this is unlikely to be the
case in many other countries, with a more gradual trickle down of technology
transfer occurring over time.

Ultimately developments will result in data exploration tools for non-ICT
specialists reducing the cost of and ability for high-fidelity visualisation of data
for enabling human interpretation. The exploration and analysis of data using
visualisation techniques is a powerful approach for conveying potential hypotheses
and exploring correlations, due to the fact that vision plays an important role in
human cognition. One example of how data-driven techniques can be used for
data visualisation is the use of self-organising maps (SOM), a form of unsupervised
artificial neural networks (ANNs), as has been used for analysing water data
in various UK industry research projects [7]. The application of SOMs has been
demonstrated in water distribution system data mining for microbiological and
physico-chemical data at laboratory scale [8] and in the field [9]; in clustering of
water quality, hydraulic modelling and asset data for a single water supply zone [10];
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in interpreting the risk of iron failures [11]; in relating water quality and age in
drinking water [12]; in exploring the rate of discolouration material accumulation
in drinking water [13]; and for geospatial burst behaviour [14]. The SOM is an
unsupervised ANN model which resembles the way biological brain maps
spatially order their responses by modelling those self-organising and adaptive
learning features of the brain [15]. Trained vectors are positioned on a regular
low-dimensional grid in a spatially ordered fashion hence facilitating improved
visualisation, readily enabling presentation and interpretation. SOMs are noise
tolerant; this property is highly desirable when sparse data are used, and thus
there are many potential applications in the water industry. The SOM (see example
in Fig. 3) contains colour-coded hexagons that summarise all of the component
planes that represent individual variables. Each hexagonal cell represents individual
neurons, which are the mathematical linkages between the input and output
layers. In the component planes for individual variables, the colouring or shading
corresponds to actual numerical values for the input variables that are referenced
in the scale bars adjacent to each plot. Blue shades show low values, and red
corresponds to high values. Visual inspection and comparison of the component
planes allow examination of how variables vary against each other. Figure 3
shows SOM analysis of data from a water quality sensor monitoring in a test loop
facility [16] for a 28-day period measuring water quality parameters every minute.
While absolute accuracy was uncertain, the way in which these parameters are
related in a time invariant fashion can be displayed by the component planes of

Fig. 2 Vision of an integrated future
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a SOM (total 39,945 measurement vectors on a 37 � 27 map). In particular,
the relationships between flow, oxidation-reduction potential (ORP) and chlorine
can be seen as similarly shaped areas of colour in the same sections of the map
(e.g. upper right corner). The use of data analysis techniques like SOMs, which
have a good resilience to sparse data, can provide value where other techniques
would likely fail.

Other approaches to data-driven visualisation/mapping and cluster analysis
include using k-means (typically with Euclidean distance), hierarchical clustering,
distribution models (such as the expectation-maximisation algorithm), fuzzy
clustering and density-based models, e.g. DBSCAN [17], Sammon’s projection
[18] and t-SNE [19].

1.3 Hydroinformatics

Hydroinformatics has emerged over the last decade to become a recognised
and established field of independent research within the hydrological sciences.
Hydroinformatics is concerned with the development and hydrological application
of mathematical modelling, information technology, data science (e.g. data mining
and knowledge discovery, big data and deep learning techniques) and computational
intelligence tools. It provides the computer-based decision support systems that
are now becoming increasingly prevalent for use by consulting engineers, water
service providers and government agencies to implement solutions such as smart
networks.
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Fig. 3 Example SOM for water quality monitoring
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Data-driven modelling seeks to provide a mapping between the inputs and
outputs of a given system, with little prior process knowledge, and is emerging
as an attractive option for prediction and classification in water systems. Over
the next decade, advancements in the general progresses of ICT (hard and soft)
such as in data analytics, accelerated computing power and mega-networking
(already becoming available) will help solve the frustrating fragmentation of
scientific information in the field of water resources. The increase of CPU power
(massive parallel computing, cloud computing, etc.) extends the possibilities
of numerical and data-driven models and of 3-D/augmented reality displays, and
Web 2.0/3.0 opens up access to information sources to millions of new users.
New developments and products in the fields of micro-sensors, alternative power
supply and wireless telecoms all revolutionise the whole domain of real-time
monitoring and consequently real-time management.

Deep learning [20] is when big data intersects with machine learning. Techniques
allow the tackling of problems that exceed human understanding. Deep learning’s
important innovation is to have neural nets learn categories incrementally,
attempting to model lower-level categories (like letters) before attempting to acquire
higher-level categories (like words). Deep learning excels at this sort of problem and
has transformed the application of AI in the last decade. Their usage has been
directly facilitated by big data on top of algorithmic breakthroughs. Next-generation
formulations of deep artificial neural networks allow for the direct transition
from data to action. Such state-of-the-art algorithms include unsupervised feature
extraction as part of the data-driven learning. Deep learning technology has
the potential to leverage the power of big data and help develop an insight-driven
culture. Deep learning has been applied to visualising high-dimensional smart water
meter data [21]. T-SNE [19] is a technique that can be used for human-intuitive
(two-dimensional) visualisation of high-dimensional data. The parametric version
of t-SNE uses deep neural networks.

2 Data Analytics: Prediction

Predictive analytics involves using the patterns of past behaviour to predict
behaviour in the future. Predictive analytics encompasses a variety of statistical
techniques from predictive modelling, machine learning and data mining that
analyse current and historical facts to make predictions about future (or unknown)
events. Predicting future values of time series is one such application useful in
many water resource domains. Since there is a set of temporal ordered observations
for which (and working on the assumption that) there exist serial correlations
along the series, previous observations can be used to predict future values. The
task is essentially one of function approximation, i.e. to approximate the underlying
continuous valued function producing the time series.

Data Science Trends and Opportunities for Smart Water Utilities 9



3 Data Analytics: Classification

There are other ways in which analytics can be used than for prediction, from
understanding customers to optimising a business process. In machine learning
and statistics, classification is the problem of identifying which category a new
observation belongs, on the basis of a training set of data containing observations
(or instances) whose category membership is known (hence described as supervised
learning). An example would be assigning a given pipe to a high-risk or low-risk
category for water quality issues based on asset characteristics (pipe material,
age, diameter, etc.). Classification can be viewed as a special case of function
approximation using some type of discriminant for the decision.

3.1 Internet of Things and Edge Computing

Internet of Things (IoT) objects and sensors can be connected to the Internet (via the
cloud) giving rise to the concept of ‘smartness’ and the development of ‘smart cities’
and ‘smart water’. By definition they have an IP address. It seems clear that in the
future, the whole water sector is going to be completely penetrated by ICT and
Internet-like technologies. It is estimated that 50 billion devices in all industries
will be connected in this way by 2020 (with an estimated 6.1 billion smartphones)
and as many as 75 billion by 2025. In a decade, tens or even hundreds of petabytes
of data may be routinely available. The sensing of data that could not be gathered
in the past and collecting them on IoT platforms is expected to create new value.
As these technological capabilities advance, so does the ability to collect information
from remote devices and correlate that information across diverse systems.
Standards will be required to manage this level of interconnectivity which may
ultimately lead to the unification of information management for the industry.
An infrastructure that can connect the monitoring and control systems to an IoT
platform allows the effective use of the operational information the systems hold
and help achieve near real-time situational awareness. Demands for solutions
and tools will become more urgent to meet the aspiration for intelligent water
networks, proactively managed through access to timely information.

In recent years, the UK water industry has been making increasing use of
advances in sensor technology for monitoring parameters of water systems to
identify performance shortfalls in order to improve asset management and
hence provide better customer service, value and regulatory performance. For
example, in supply systems sensors for flow and pressure have become more
widely used, especially on trunk mains and at district metered area (DMA) level,
to facilitate zone-based asset management. The monitoring of sewerage systems
has not progressed as far; however there is an increasing interest and deployment
of instrumentation, for example, for CSO (combined sewer overflows) level
measurement and pump station flows. Water quality data (parameters such as
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water temperature, turbidity, conductivity, colour, pH, etc.) is not currently
collected in a very consistent and automated manner across networks, and
these sensor technologies (and their price) have moved little in the last decade.
New spectroscopic methods are now coming into use (see chapter “Spectroscopic
Methods for Online Water Quality Monitoring”). Water quality measurements can
help to identify discolouration events and monitor chlorine residuals (see chapter
“Using Radial Basis Function for Water Quality Events Detection”). As the technology
improves and the whole life cost of ownership falls, water quality instruments could be
used for the provision of operational data and become as widespread as for flow
metering. Water quality data analytics are relatively undeveloped because there are
limited significant deployments of real-time water quality monitoring within networks
[22]. Future technologies promise enhanced sensors for natural biological/biochemical
markers. Interpretation and analysis across multiple online parameters is expected to
provide deeper understanding of water supply system state and asset condition.

The proliferation and diminishing costs of automated data transfer, such as
by GPRS, 4G/5G, Wi-Fi, LoRa/LoRaWAN and Sigfox systems, are allowing all
types of recorded data to be transferred from many disparate points on the networks.
New developments and products in the fields of micro-sensors, alternative power
supply and wireless telecoms all revolutionise the whole domain of real-time
monitoring and consequently real-time management. It is easy to anticipate that
the environment may quite soon be teeming with tens of thousands of small,
low-power, wireless sensors. Each of these devices will produce a stream of data,
and those streams will need to be monitored and combined to detect interesting
changes in the environment. The emergent properties of data from networks
of simple, low-cost sensors will be increasingly fruitfully explored.

IoT will be dominated in the coming years by the growth of edge computing
systems as roll-outs of the technology in the field become more complex and larger
scale. Edge computing represents cutting-edge hardware and software co-located
at IoT endpoints that make the technology far more efficient, scalable, secure and
manageable. The presence of on-board CPUs can form basic analytical functions
(e.g. which data to send to customer’s smartphone apps, which data to send to the
WSP and when it should be sent), combined with on-board data storage that would
really make devices smart, and not just a measurement and communication device.

It will also make IoT solutions much smarter by enabling the deployment
of machine learning and AI capabilities much nearer the point-of-use that will
enrich and optimise what is possible. Edge computing will enable AI applications
in scenarios where processing is better performed locally. Advances in sensors
and low-power computing architectures will enable edge computing with high-
performance, real-time and increasingly complex AI solutions. This has promise
to yield huge cost savings for remote locations with limited or expensive Internet
connectivity and to reduce the overhead of centralised processing. Traditionally,
in IoT, the predictive analytics have been done by analysing the data in the cloud.
However, that may not always be possible with large amounts of streaming
data arriving from the edge devices. Making edge devices smarter will thus be
critical. The prediction rules may be discovered a priori in the cloud, and
these lightweight rules can then be deployed on the edge devices.
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4 Cloud Computing and Condition Monitoring

Utility companies have been exploring more advanced architectures for real-time
performance management such as data sources going via a WAN (wide area
network) to the database system and then a telemetry portal allowing access on
demand, e.g. through a web browser. Future operational applications will allow
data to be processed locally or remotely on the cloud to provide exception alert
generation or other information involving more than one signal using peer-to-peer
technologies. Water utilities have been slow to utilise cloud hosting and services
due to perceived concerns about security. Security should not be a reason to not
adopt cloud-based solutions – if the correct platforms are being leveraged.
Placing workloads in the cloud does not require a security trade-off, with enterprises
actually benefitting now from the security built into the cloud, often resulting
in fewer security incidents than when using traditional data centres.

By 2020, at least a third of all data will pass through the cloud. Cloud
technology can provide a catalyst for innovation in business and a transformation
of traditional ways of operating. Users can run services on data over the cloud,
moving processor-intensive operations away from the desktop into disparate remote
locations. A benefit of cloud hosting is ‘time to value’. By having infrastructure
available on demand, new innovations can be developed, tested and launched much
faster than in comparison to deploying traditional IT infrastructure. It is also easier
to cope with spikes in demand or unplanned growth. Further, with cloud-hosted
desktops, lost or compromised hardware no longer poses the same security threat, as
data is not on the device. This extra layer of protection ensures that critical data
is only stored inside the data centre (where it is more easily managed, protected
and recovered). Cloud native applications are designed to be self-healing, able to
seamlessly adapt to loss of infrastructure components with no human intervention
required.

Cloud computing offers an opportunity to make the results of condition
monitoring readily available to a range of stakeholders responsible for the
maintenance of an asset. Data from sensors distributed across one or more assets
at one or more sites are uploaded to the cloud compute resource for continual
analysis. Users can then run services on data over the cloud, using the computational
and data processing power of grids and moving processor-intensive operations
away from the desktop into disparate remote locations. A shared environment
allows engineers to access data, tools and analysis in real time and to collaborate
on diagnostic decisions relating to the condition of a remote monitored asset.

5 Digitalisation

The ‘Fourth Industrial Revolution’ and ‘The Second Machine Age’ are used
to describe current efforts to digitise sectors, from government to healthcare
to education to manufacturing to business services. Digitisation is transforming
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the world we live in with social, political and economic consequences. In recent
years we have witnessed the rise of social media, powerful smartphone proliferation
and new e-commerce businesses/e-services. The negative mirror image has included
disappearance of traditional businesses, tech giant monopolies, unfettered data
harvesting and fake news. Digitalization poses potential disruption to work and
workers but if new technologies and new data are integrated successfully by
reimagining business processes, great opportunities. These new technologies have
the potential to deliver significant outcomes in the water sector. In a 2017 report,
the World Economic Forum identified a $100 trillion opportunity by 2025 for
both industry and society through the adoption of these technologies [23].

Digital water is about setting the foundation for utilities to begin applying
data science and related technologies (such as IoT, AI, blockchain and augmented
reality) to amplify the power of data to optimise real-world decision-making
across water networks. Digitalization has the potential to take water utilities into
the twenty-first century where almost everything can be measured. Digital twin
solutions involve the creation of a virtual model of the real world and can be used
to help understand the impact of incidents and prioritise the appropriate response
actions. Gartner predicts that by 2021, half of the large industrial companies will
use digital twins, resulting in a 10% improvement in effectiveness. Digital twins
drive the business impact of IoT by providing a powerful way to monitor and
control assets and processes. These virtual representations of water systems will
enable situational awareness and/or near real-time hydraulic and quality monitoring,
which has great potential to solve many of the business challenges faced by the
industry such as improving efficiency, resilience, predictive maintenance and/or
driven down operational costs. Figure 4 illustrates how water sits within a larger
digital landscape. It is important that there is a communication strategy in place to
bring together all ‘digital’ stakeholders, including consumers, utility employees,
regulators, environmentalists, etc., in the digital transformation. Most stakeholders
and the communities they serve can understand the benefits of digitization. Water
users are already profoundly connected with digital technologies permeating
our daily lives in ways that were unimaginable several years ago. Digitisation
has accelerated the collection and dissemination of actionable information to
all stakeholder groups including customers. Early engagement by bringing these
stakeholders into the discussions as early as possible encourages more collaboration
and joint consideration around the ultimate vision. Customer’s expectations around
sustainability are driving behavioural changes in traditional utility practices.
Some consumers already participate in water conservation, and they will be able
to do that more and more as utilities digitise, making smarter decisions about how
they use and reuse their water using new sources of information such as smart
meters. Smart-sensing technology, social media, utility web-monitoring portals
and apps (quantified-self/digital customer), gamification and AI chatbots allow
water consumers greater access to information and improved rates of engagement.
At the same time, consumers are also coming up with innovations and hence driving
the change rather than acting as a recipient only.
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6 Blockchain, Data Sharing and Web 3.0

Approximately 80% of data is closed (organisational) or personal – large volumes
remain untapped behind firewalls. Secondary or tertiary uses of this data are not
realised or known. The organisations that own closed data and the direct interactions
between consumers and producers are essentially best positioned to dominate
the market and create new business models that will lead to a successful digital
transformation of a utility. How is it possible to unlock water sector proprietary
data in faster, better and more trusted ways? The water sector has historically
had trust issues with proprietary data. However, the potential benefits of open
data (data that anyone can access, use and share) need to be considered, specifically
by opening up previously closed data to data innovators. Data can be best considered
as an ‘e-infrastructure’ to facilitate this. Water companies are heavily reliant on
data, but there are often concerns over data quality. A move to more standardised
information representation for interoperability is needed for the future, resulting
in independence from any particular computer software system and leading
to standardised interfaces, technical information models and convertibility to
XML and Web 3.0 formats. Web 3.0 refers to a semantic web, which is a

Fig. 4 The larger digitalization landscape that water companies operate within: data sources,
issues and actors
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web where all information is categorised and stored in such a way that a
computer (perhaps through AI) can understand it as well as a human. Machine to
machine communication in Web 3.0 will be key to a step change in optimising
performance with distributed middleware infrastructure allowing receiving systems
to communicate with downstream applications. The new focus for Web 3.0 is user
centric: decentralisation, privacy and security.

Blockchain is a shared, secure, distributed ledger which is ideal for applications
that require trust and transparency. Figure 5 illustrates how there are many database
copies (hence many owners) which result in resilience to both technical and
organisational failure. The potential for blockchain to disrupt a wide range of
industries has been well publicised, from Fintech to energy, governance, healthcare,
supply chain, creative industries and many others. Originating in the cryptocurrency
space, Bitcoin was introduced as a peer-to-peer version of electronic money [24].
Features include proof of work (cryptographic hash power to secure the network
and mine new tokens), digital scarcity, immutability and censorship resistance. The
technology is, in the most basic form, a digital record distributed across the Internet
and allowing two users to conduct a transaction without the need for a third party
or centralised intermediary (such as a bank, VISA or PayPal). Blockchain can
provide a mathematically secured (using cryptography), verifiable and traceable
database or a ‘ledger’ of transactions (hence also referred to as distributed ledger
technology (DLT)). Blockchain ledgers are tamper-proof and safe from malicious
actors because the data does not exist in any single location. Innovators and
regulators continue to believe that tokens (virtual utility or security digital tokens)
can be foundational to Web 3.0 infrastructure and represent the opportunity for
new business models including the convergence with other technologies including
AI and IoT.

Blockchain technology could be used to validate transactions, ensure trust
(hence security) and reduce costs for IoT. It can potentially be employed to
trace billions of connected devices and process microtransactions (machine to
machine) between them. However, large and busy networks can potentially
suffer from substantial latency. Propagation issues may leave significant parts of
the network out of the consensus loop (out of date). Another bottleneck can be
transaction backlogs or block size issues leaving nodes unable to participate
in consensus due to local issues. Practical blockchain implementations need
to address these risks through simplification and compromise (such as through

Fig. 5 Blockchain (distributed ledger) decentralised architecture
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the consensus mechanism). Criticisms regarding Bitcoin’s usage of increasing
amounts of electricity (and hence water) have been recently levelled, particularly
in light of a desire to reduce carbon footprints [25]. However, a blockchain
only needs substantial power if trying to secure something valuable on a public
permission-less platform. A private permissioned blockchain requires very little
proof of work security. This type of blockchain relies on user access control (for
trust) and consensus and governance being achieved by other methods (such as
proof of stake), and these platforms are being implemented by large corporations
for a wide range of applications.

Blockchain technology could alleviate utility fears about the security and
confidentiality of data by creating transparent supply chains and provide analysts
with better datasets to use in their analyses. Data mining, analytics and AI depend
crucially on the quality and quantity of data so this has been a bottleneck. Blockchain
could help with sharing of data among utilities. They are often reluctant to contribute
data to joint databases, often citing confidentiality and commercial sensitivity as
the key reason. With blockchain technology, it is also possible for industries,
consumers, households, and water managers to retrieve valuable information about
water quantity and quality and help make informed decisions. This data empowers
users to make better decisions about water usage and conservation, once regulatory
constructs exist (with near-term potential in water billing and supply management).
Other use cases include:

• Peer-to-peer trading. Blockchain can deliver a financial platform for decentralised
water treatment and management in local communities in a similar manner as
solar panel energy trading. Civic Ledger has used blockchain to improve water
trading in Australia, allowing smaller irrigators to enter the market by reducing
intermediaries. This company has also been investigating how a blockchain micro
trading platform could open up rainwater trading with residents near Melbourne.

• Smart contracts and settlements. A water treatment technology company Origin
Clear has developed a system called ‘Waterchain’ to finance water treatment by
embedding smart contracts and a cryptocurrency for payments on a decentralised
water funding platform.

• Water rights trading – such as trading water credits and tracking shortfall and
surplus with a digital twin.

• Buying and selling energy.
• Cybersecurity.
• Capital raising.

7 Smart Networks

Smart cities need to bring together hard infrastructure, social capital including
local and community institutions and technologies to fuel sustainable economic
development and provide an attractive environment for all [26]. The concept of a
smart city within the context of water means using technologies for optimising
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water resources and waste treatment, monitoring and controlling water and
providing real-time information to help water companies and households manage
their water better. Smart water networks have been described as layered
architecture, beginning with the sensing-and-control layer through data collection
and data management and ending with the data fusion-and-analytics layer [27].
Although the technology components for smart water cities are available, the route
to application is uncertain. The main hurdles are lack of integrated and open
solutions, difficulty to comply with user and integration requirements, lack of
clear and validated business cases for solutions, lack of business intelligence
awareness and lack of political and regulatory support.

The quantity and complexity of sensor and environmental data is growing at
an increasing rate, while the demands for new solutions and tools to utilise and
interpret this data are likewise growing due to financial and regulatory pressures.
The phrase ‘big data’ may then become a reality for the water sector particularly
on the customer side, since when smart metering becomes more prevalent a
huge amount of data will be collected. If the UK goes to a point where the
entire water industry is universally metered with smart metering, there will be
approximately 25 million water meters for customers. Organising, managing
and supporting such massive ICT network infrastructure, however, are substantial
technical challenges. This data could be used, in conjunction with mapping software
and hydraulic models to map consumption in DMAs where there are spikes in usage.

As demand for clean water increases with population growth in the coming
decades and supply remains stagnant or shrinks due to climate change, solutions to
manage and minimise leaks will become increasingly critical. Many water utilities
are struggling to measure and locate leaks in their distribution networks beyond
the economic level of leakage, and there is a drive to efficiency by implementing
leak-reducing solutions. Leakage results in wasted energy costs (such as spent
pumping water), water treatment costs (energy and chemicals), misdirected repair
activities, regulatory penalization and environmental damage to city infrastructure.

Smart water networks offer the potential to identify leaks early, thus reducing the
amount of water that is wasted and saving utilities money. These solutions include
the use of flow and pressure sensors to gather data, analyse the data using algorithms
to detect patterns that could reveal a leak in the network and provide real-time data
on the location of a leak. A condition monitoring approach for smart networks
can allow the early detection of potential faults in assets. The integration of real-
time analytics can facilitate rapid determination (i.e. before customers are impacted)
of abnormal flow events.

A number of approaches from the fields of artificial intelligence and statistics
have been applied for detecting abnormality in WDSs from time series data.
Alert systems that convert flow and pressure sensor data into usable information
in the form of timely alerts (event detection systems) have been developed with a
focus on burst detection to help with the issue of leakage reduction. Analysis systems
need to provide useful classifications of system status, events and conditions
and not provide an onerous number of alerts or alarms to system operators who
will otherwise ignore warnings hence compromising the value of the information.
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Most of these systems are for detecting leaks/bursts at district metered area (DMA)
level. DMAs are designed to be hydraulically isolated areas that are generally
permanent in the system. Automated online analysis systems have the potential
to be a useful tool for real-time identification of small- to medium-sized bursts.
Their use promotes a more proactive approach to leakage management, with
awareness of leakage incidences soon after they occur and before the customer
is seriously impacted. Such systems make it feasible to identify and hence find
and fix leaks that would previously have become background leakage, providing
the potential to reduce the so-called Economic Level of Leakage. Mounce et al. [28]
review approaches for event detection in WDS measured time series data, with
a focus on data-driven methodologies for leak detection. Wu and Liu [29] also
provide a more extensive summary of data-driven approaches and their performance.
Mounce and Boxall [30] describe an online system pilot implemented with a UK
water company using an ANN and fuzzy logic system for detection of leaks/bursts
at DMA level. This AI system was not reliant on any special hardware or network
configuration and produces intelligent ‘smart alarms’. The system was subsequently
commercialised as FlowSure (Servelec Technologies Ltd) demonstrating how
academic research can have real-world impact.

Smart water network technologies have the potential to deliver an improved
service to customers and cost-effective performance improvements for the
water industry. Sensor technology and the ‘big data’ they generate combined
with advanced ML techniques are providing new opportunities for deeper
understanding of WDS. SmartWater4Europe (SW4EU) was a European FP7
demonstration project. Four demo sites comprise solutions for leakage control,
water quality management and energy optimisation incorporating sensors, data
processing, modelling and analytics technologies. The UK demo site (TWIST) in
reading investigated how emerging technologies can be used to create a SWN with
near real-time notification of performance to enable proactive management and
intervention (particularly for leakage). Technologies utilised during the pilot
have included installation of flow instruments through full-bore hydrants,
instruments capable of high-resolution monitoring (thus enabling the identification
of pressure transients), AMR customer smart meters as well as traditional sensors.
Three network leakage algorithms to detect leakage and other abnormalities
(as soon as they occur) in the water network were tested and assessed: AURA
BED alerts as described in [28, 31], dynamic bandwidth monitoring (DBM) and
Netbase envelopes (developed by Crowder Consulting). Having a standard approach
to test different algorithms allows an objective comparison of their effectiveness.

Increasing amounts of SWN data are only of real business value if this
valuable resource is ultimately used to inform and support decision-making,
i.e. data to information to insight to action. Projects such as SW4E allow the
exploration, at demo and full WDS pilot scale, of deploying multiple smart
network technologies, both hardware and software, and the multiplicative synergy
between them. The deployment of a smart water network has its own challenges
such as large network data stores, false positives, limited analytical capability, pipe
location and condition, failure prediction, meter coverage, response to failures, etc.
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Dealing with these challenges at a small scale, before increasing the scope and
area, enables the understanding of the best way to do it and allows us to assess
the risks and benefits. Successful demonstration of the return on investment
business case will ultimately allow full-scale roll-out of smart DMAs. Successful
demonstration of the return on investment business case will ultimately allow
full-scale roll-out of smart DMAs.

The full possibilities of smart network technologies to deliver improved service
to customers and cost-effective performance improvements in the water industry
are yet to be realised. Smart metering technologies need to be able to support
decisions at both the household and utility levels [32]. Sensor technology and
the ‘big data’ they generate combined with advanced machine learning techniques
are providing exciting new opportunities for new scales of understanding of WDS.
With increased DMA flow and pressure measurements comes the possibility of
leak localisation at the sub-DMA level [33, 34]. AMR data expands information
availability even further and has the potential to be used for customer profiling at
the WSP side, allowing urban water planning and management based on consumer
types and for informing customers on their water end-use patterns. Nguyen et al. [35]
present a methodology using hidden Markov model and dynamic time warping
algorithm techniques disaggregating customer data into its end-use categories,
including for rapidly alerting consumers of occurring leak events. By utilising
AMR for demand forecasting, the possibility for reducing costs for treatment,
storage and distribution arises such as through optimisation of pump scheduling.
Candelieri et al. [36] present a data-driven, fully adaptive self-learning algorithm
for short-term water demand forecasting utilising AMR data. In the future, water
and energy use could be more efficiently managed through smart meter adoption and
changing the 24-h diurnal demand profile.

8 Use of Smart Meter Data

There is more to smart water metering than accurate billing, but the business
case for investing in smart meters and automatic meter reading is often complex.
The technological development and digitalization of the water industry show no
sign of slowing down, but the right tools can help water utilities decrease the
complexity of their daily work and transform their meter data into valuable
knowledge.

The concept of a smart city places citizens at the centre of services within a city.
This involves bringing together hard infrastructure, social capital including local
skills and community institutions and technologies to fuel sustainable economic
development and provide an attractive environment for all. For the water sector,
this means using technologies for optimising water resources and waste treatment,
monitoring and controlling water and providing real-time information to help water
companies and households manage their water better. The increasing use of smart
water metering technologies for monitoring networks in real time is providing water
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utilities with an evergrowing amount of data on their business operations and
infrastructure. Advanced metering technologies coupled with informatics create
an opportunity to form digital multiutility service providers [37]. Such metering
devices embrace two distinct technologies: meters that record water usage and
communication systems that can store and transmit real-time water use information
[38]. The ideal approach for their smart city application is installing smart water
meters at the property boundary in conjunction with intelligent end-use pattern
recognition algorithms either in-built into the meter software or within a processing
module at the utilities data centre. However, such an end goal requires the ability
to analyse collected data without human interaction and manual reclassification,
and this is non-trivial.

Increasing amounts of smart network data are now being collected by WSPs;
however the data is only of real business value if this valuable resource is ultimately
used to inform and support decision-making. The full range of uses for these
observations is only beginning to be realised and exploited. Recent work has
explored the use and analysis of such data. It has been argued that using
actual observed data, demand profiles can be calculated to provide more accurate
representations of high-granularity historical data, with potential applications in
real-time leakage detection, customer profiling and the provision of network
modelling demand patterns [39]. Time series clustering is an active area of research,
with the major issues being high dimensionality, temporal order and noise [40].
McKennaa et al. [41] investigated employing Gaussian mixture models (GMMs)
as the basis set for representing demand patterns using a dataset of hourly demand
readings spanning a 6-month study period, for 85 service connections within a
single DMA. While there was no customer information available for the dataset,
it was hypothesised after applying k-means that evidence of patterns found may
represent both residential and commercial customers. Garcia et al. [42] demonstrated
the potential use of k-means for clustering AMR data based on shape. Hadoop and
Spark were used in a big data context to provide an unsupervised classification
of the demand patterns from smart meters, with hourly interval feature vectors
of a weekly profile for 51,117 smart meters over a 1-year period (approximately
317 million observed readings). Nine distinctive clusters were identified. However,
no additional information (including customer type) was available other than
demands. In Mounce et al. [43], a case study of approximately 250 million readings
is presented, using a workflow for cleaning and preprocessing AMR data and
then clustering average daily demand patterns using the k-means ++ algorithm
with a correlation distance metric. Three natural clusters in the data (confirmed
by using silhouette plots) were found to correspond strongly to a residential and
commercial composition based on customer type which was used for post-analysis.
Further, a classification approach was also presented, comparing five classification
models with K-fold cross-validation, in order to classify into residential and
commercial customers. When using an ensemble of RUSBoosted decision trees
(for a fivefold), the overall accuracy was 91.3% (TPR 92% for residential and
84% for commercial) confirming dominant patterns of usage.
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Potential application areas for further work as more smart data becomes routinely
available include:

• Data mining: understanding how businesses and households use water and
whether and where unique patterns in this use exist is essential for proactive
management (including weekday vs. weekend analysis).

• Applying customer segmentation based on consumption data for customer
loading and variable water pricing in a similar manner to energy (some industrial
customers already have tariffs based on time of day usage).

• For leak detection activities based on detecting pattern changes (deviation
from cluster centroids/distributions); data-driven models of demand could also
help identify atypical customers or unusual changes in consumption.

• Filling missing data for audits/regulatory purposes using cluster centroids/typical
usage perhaps allowing volumetric usage and flow profiles to be estimated for
unmetered customers.

• Allowing a WSP to forecast the demand of a client or the overall DMA and
hence improved network operations.

• More accurate demand profiles for hydraulic modelling.

9 Discussion of Technology Adoption
and Recommendations

Water is considered a ‘right’ in many parts of the developed world which
have grown accustomed to clean drinking water and sanitary facility provision.
Many of the world’s leading water companies have been around for decades,
even centuries. They enjoy high prestige, low staff turnover and healthy margins.
Few see threats from competitors poaching metered customers who are tethered
to miles of buried pipe infrastructure. Regulation can also be a barrier to innovation.
As natural monopolies, the incumbent water utilities generally feel safe and insulated
from competition. Digitisation was once seen as a luxury. However, innovators are
disrupting the old business models, and there is little place anymore for complacency
with threats such as decentralised and distributed technology arising. Disruptive
innovation need not be a zero-sum game in which only one side emerges victorious.
There is no reason why water utilities cannot learn from insurgents, engage with
new thinking and embrace innovation to update their business models to deliver new
solutions that benefit all.

A further issue is that the water sector is not generally perceived as a ‘cool’
industry, partly due to it not being at the forefront of the technology adoption
curve. In contrast, new digital technologies are a hot topic particularly as machine
learning and AI begin to proliferate into industrial application. This fact means
that a career in the water industry generally isn’t a top priority for data scientist
professionals and attracting the right type of talent can be difficult. Startups in the
water sector can rarely compete financially with Google for hiring coders, graphic
designers and tech engineers. Nor can potential return on investment compete
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with unicorns like Facebook, Netflix or Uber. However, the sector needs to avoid
being a slow adopter of data science and consequently should consider investing
decisively in this direction. Solutions include:

• Some key recommendations to drive the digital agenda more generally are as
follows:

– First, secure executive buy-in, and then devise a digital strategy with an action
plan (and stick to it).

– Second, build the technological foundation by ensuring the basics are in place
to support future growth.

– Third, focus on business priorities, and communicate quick wins to tie the
investment in digital to outcomes that support the strategy (immediate pay
back is often needed in order to gain approval for implementation).

• Promote in-house expertise and roles (e.g. data scientist) hence embedding
personnel within water companies. Leveraging existing toolboxes (particularly
for machine learning) and workflows is becoming easier so that the barrier to
entry has now been now lowered (PhD qualifications were usually required in
the past for AI).

• Adopting open-source programming languages (such as Python) and tools
can facilitate collaboration and shared development. Software produced in
water engineering research has previously often been bespoke and stand
alone, and more thought needs to be directed at reusability, sustainability and
maintainability. For example, university research project software is usually
developed in isolation in languages such as MATLAB and may only persist
through one or two generations of researchers (such as passed down from
an academic to a PhD student).

• In the UK, centres for doctoral training like STREAM and WISE embed a
doctoral engineer in water companies helping such transfer.

• Other collaborations between industry, SMEs and research establishments in
projects (e.g. through European H2020 or UK Innovate funding) encourage
knowledge transfer. Data dives and hackathons provide forums for building
teams of collaborators.

Some private sector water utilities are already leaders in the digital space
and active in sharing their early successes with leveraging connected devices,
IoT and machine learning. This digital re-imagination of the sector will enable
a broad spectrum of outcomes from improved efficiencies to optimised asset
management across providers and potentially new business models such as
consolidated multiutility retail operations. While there is an increase of digital
adoption in water, the sector still lags behind other industries in integrating
new, smart technologies. Water utilities can benefit from the lessons learned in
other sectors (such as energy) and the established best practices and network
infrastructures. As technology evolves, the price for smart devices decreases,
the functionality increases, and consequently piggybacking on other sectors’ lead
can result in an accelerated adoption rate for realisation of benefits in the water
ecosystem.
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Cybersecurity is a growing concern today, and the risk is increasing. Historically,
WSP control systems were not designed with security in mind, and while this
alone doesn’t make them vulnerable, considerations must be made when digitising
an existing system with older applications and tools. Increasingly, there are threats
around the critical control systems, especially those that control water flows, so
treatment works and other key infrastructure are potential security risks.

10 Summary

In a game-changing period of rapid technological transformation, smart networks are
at the forefront of investment plans for UK water companies as part of a progression
to a circular economy [6]. Technological advancements allow water companies to
gather more information about their networks and assets than ever before. Extra data
provides new opportunities for asset maintenance and event analytics. Digital water
will bring automation and connect the sector to the Internet of Things. Technologies
like data analytics, cloud computing, augmented intelligence and blockchain provide
new capabilities to analyse, automate, correct in real time, predict and minimise
risks. Edge computing will help make IoT roll-outs more integral and core to the way
businesses work in coming years.

Water utilities are investing in new technologies that improve customer service,
enhance efficiency and drive resilience. A smart water network is a fully integrated
set of products, solutions and systems that enable water utilities to remotely and
continuously monitor and diagnose problems, pre-emptively prioritise and manage
maintenance issues and remotely control and optimise all aspects of the water
distribution network using data-driven insights.

When considering artificial intelligence, cloud and the latest sensor technology
from the standpoint of a water utility, many are still struggling with paper reports,
so there remains a long road ahead. The digitalisation of water is no longer optional.
It takes an entire ecosystem to digitise a utility, including innovation partners
and supply chain providers. By ‘digitising the utility’, metered account holders can
grow more involved and act on valuable knowledge on their usage, costs and
conservation strategies.

With AI becoming more prevalent across industries, there is a growing need
to make it broadly available, accessible and applicable to engineers and scientists
with varying specialisations. Engineers, not just data scientists, will drive the
experimentation and adoption of AI in water industry applications. Complexity
of larger datasets, embedded applications and bigger development teams will drive
solution providers towards interoperability, greater collaboration, reduced reliance
on IT departments and higher productivity workflows.
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Abstract Optimal sensor placement in water distribution systems (WDSs) for leak/
burst detection and localisation is a well-established and very productive research
field. Its primary focus is to minimise the cost of a proposed sensor network
infrastructure while maximising the capability to detect and localise leaks and bursts
through the analysis of the collected data. This chapter reviews in a systematic
manner relevant articles published over the last decade aiming at rationalising the
work carried out in this field. It presents a synthesis and analysis of the relevant
published works to (1) provide insight and awareness of differing arguments,
theories and approaches, (2) highlight their capabilities and limitations and (3) iden-
tify the state of the art in their development. It also provides insight and awareness of
differing approaches that have been proposed to tackle specific issues encountered
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by researchers when developing their proposed techniques such as model and
measurements uncertainties. Trends and gaps in the current research and future
research directions are identified and discussed in this chapter, and a number of
considerations to promote further developments in this important field of research
are presented. The desired outcome of this chapter is to serve as a useful resource for
researchers and practitioners involved in sensor network design for leak/burst
detection and localisation and in the development/adoption of leak/burst detection
and localisation techniques.

Keywords Leak and burst detection and localisation, Literature review, Pressure
and flow sensors, Sensor network design

1 Introduction

The problem of leak and pipe burst events in water distribution systems (WDSs) is a
compelling issue for water companies worldwide. Leak and pipe burst events not
only cause economic losses to water companies [1] but also represent an environ-
mental issue (i.e. waste of water and energy) and a potential risk to public health
[2]. Furthermore, they have a negative impact on water companies’ operational
performance, customer service and reputation. Currently, a wide range of leak/
burst event detection and location techniques exists that are based on various
principles [3–7]. However, none is ideal, and the number of techniques currently
practised by water companies is limited. In many cases, pipe bursts are brought to the
attention of a water company only when someone calls in to report a visible event.
Water companies embracing modern leakage management technologies devote
considerable manpower and resources to proactive detecting and localising leaks
and pipe bursts by utilising techniques that make use of highly specialised hardware
equipment (e.g. leak noise correlators, acoustic sensors mounted on inline pipeline
inspection gauges, ground penetrating radars, etc.). Despite some of these techniques
being the most accurate ones used today [6], they are also costly, labour-intensive
and slow to run. Consequently, much research has been focused on finding inex-
pensive (i.e. numerical) techniques that can help the water companies significantly
reducing the leaks/bursts’ lifecycle by making them aware of the occurrence of these
events much faster and guiding the water company personnel straight to the problem
areas.

In the above scenario (and bearing in mind that in the last decade the importance
of a proactive approach to network management and near real-time assets monitor-
ing have become apparent as water companies have had to deal with tightening
regulatory and budgetary constraints), it is clear that instrumentation and analytics
can play a vital role in addressing the aforementioned issues. In the UK, and as
recommended internationally by the International Water Association (IWA), WDSs
are divided into District Metered Areas (DMAs), which may consist of
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approximately 300–5,000 properties. The current UK industry practice is to install a
flow sensor (and sometimes a pressure sensor as well) at the inlet of a DMA and any
outlet (e.g. to another DMA or to a large industrial user) and a (supplementary)
pressure sensor at the so-called critical monitoring point within the DMA (i.e. the
point located either at the point of highest elevation or alternatively at a location
farthest away from the inlet). With recent improvements in sensor technology and
communication technologies (such as GSM, GPRS and, more recently,
LORAWAN, Sigfox, NB-IoT and 5G), data can now be transferred via wireless
systems, and batteries last much longer, meaning that sensors can be placed in less
accessible areas and data from these devices can be received in near real time
(e.g. every 15 min). Furthermore, it is becoming more feasible to deploy larger
numbers of instruments per DMA, as the cost of both pressure and flow instrumen-
tation (and their maintenance) has been reduced considerably. As a result, a vast
amount of pressure and flow data originating from the many DMAs that typically
form a UK WDS is now frequently available and expected to quickly grow over
time. This data can give insights into the operation and current/future status of water
networks and support many water loss-related activities, such as estimating back-
ground leakage levels, establishing and maintaining hydraulic models of water
systems and detecting and localising new leaks and bursts as they occur. With regard
to the latter, data-driven techniques utilising machine learning and advanced statis-
tical tools have been developed that automatically manage and analyse in an on-line
fashion increasing numbers of near real-time data streams aiming at enabling the
detection and (in certain instances) the approximate location of leaks, bursts and
other similar network events (e.g. [8–18]). These techniques can complement tradi-
tional leak/burst localisation methods such as acoustic surveys, which can then be
used for accurately determining the exact leak/burst position (i.e. pinpointing). The
value of the information that can be derived through analysis of sensor data and
hence the success of the aforementioned methods (especially for localisation),
however, is critically linked to the number and types of sensors deployed and their
locations. As previously mentioned, it is envisaged that in the near future higher
numbers of sensors (especially pressure, for their lower cost and easier installation
and maintenance when compared to flow sensors) will be used to monitor WDSs.
However, due to the financial constraints placed on water companies, the costs of
increased instrumentation in WDSs (both capital and ongoing maintenance) must be
weighed against the operational and other cost savings which can be made by
improving network operations and management. It is therefore desirable to limit
the number of additional instruments to be deployed by selecting the optimal number
and location of sensors in a DMA.

This chapter provides a critical state-of-the-art literature review on the subject of
optimal sensor placement in WDSs for leak/burst detection and localisation. It
provides details of a number of existing sensor macro-location design methodologies
intended to facilitate the efficient collection of relevant measurements in WDSs for
that specific purpose. Generally speaking, the optimal placement of a limited number
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of sensors within a WDS (‘ideal’ locations at which measurements of selected
quantities should be taken) is a necessary step in the application of intelligent and
cost-effective monitoring for current and prospective WDSs. The definition of an
“optimised” sensor network is dependent on the intended purpose of the sampling
scheme and the resulting sensor data. Design methodologies in the literature are
typically catered towards one of a number of distinct agendas, and the field is
consequently segmented into a range of subsidiary groups – i.e. methods to deter-
mine optimal placement schemes for effective contaminant detection (e.g. [19–25]),
methods to determine optimal placement schemes for model calibration (both
hydraulic, e.g. [26], and water quality, e.g. [27]) and methods for leak and burst
detection, each formulation of which may be largely irrelevant outside of its own
context. Although a large amount of methods that consider how to identify the
optimal placement of both pressure and flow instrumentation within WDSs at the
DMA level for leak/burst detection and localisation can be found in the sampling
design literature, a comprehensive review of their capabilities, limitations and other
aspects important for assessing the potential of these techniques to be beneficially
utilised by water companies has not yet been presented in any review paper.

As only a limited number of sensors can be installed in WDSs due to budget
constraints and since improper selection of their location may seriously hamper leak/
burst detection and localisation performance, the development of optimal sensor
placement strategies has become an important research issue in recent years. This
chapter aims at rationalising the relevant published works in the field and is
organised as follows. After this introduction, Sect. 2 presents a synthesis and
analysis of the relevant published works aimed at (1) providing insight and aware-
ness of differing arguments, theories and approaches, (2) highlighting their capabil-
ities and limitations and (3) identifying the state of the art in their development.
Section 3 focuses on specific issues encountered when developing techniques for the
optimal placement of sensors for leak/burst detection and localisation that
researchers in this field have tried to address (e.g. model and measurements uncer-
tainties, simultaneous use of pressure and flow sensors, etc.) and provides insight
and awareness of differing approaches that have been proposed in those contexts.
Section 4 presents considerations regarding, inter alia, the potential of the proposed
techniques to help water companies minimising the leaks/bursts’ runtime by effec-
tively detecting and localising these events as they occur in a DMA and the gaps in
the current research. Finally, a summary of the chapter containing the main conclu-
sions and highlighting the key considerations made is given in Sect. 5 in order to
promote further developments in this important field of research.

The desired outcome of this chapter is to serve as a useful resource for researchers
and practitioners involved in sensor network design for leak/burst detection and
localisation and in the development/adoption of leak/burst detection and localisation
techniques.
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2 Synthesis and Analysis of Optimal Sensor Placement
Techniques for Leak/Burst Detection and Localisation

The amount of information on a leak/burst event occurrence in a pressure or flow
signal from a DMA is a function of the number and types of sensors and their
locations, as well as the DMA structure and event location, among the others. As
such, measurements at some locations can include more information regarding an
event than measurements at other locations. The main aim of optimal sensor
placement for leaks/burst detection and localisation techniques is therefore to place
the minimum number of sensors in a DMA to capture the event “effects” no matter
where in a DMA the event occurs and then effectively use this information to
provide detection alarms and accurately identify the approximate event’s location.

Model-based leak/burst detection and localisation techniques, using pressure and
flow measurements and hydraulic models of WDSs, have been studied for approx-
imately two decades, since the paper by Pudar and Liggett [28], which formulates the
leak detection and localisation problem as an indirect (see [29]) least-squares
parameters estimation problem. However, the estimation of the parameters describ-
ing a WDS model is a difficult task since these models are non-linear. This said, with
the papers by Farley et al. [30] and Pérez et al. [31], the last decade has seen a large
number of papers published on this subject that attempt to use direct (see [29])
methods to solve the leak/burst detection and localisation problem. Almost all these
studies work by running multiple hydraulic model simulations of various leak/burst
scenarios and then evaluating the sensitivity of different monitoring points to the
imposed ‘fault’ conditions. Because of this, many of these studies are inspired by the
model-based fault diagnosis theory (see, e.g. [32]), the main objectives of which are
maximising fault detectability (i.e. ability to identify a fault occurrence in a system)
and fault isolability (i.e. ability to distinguish between two possible fault
occurrences – as, if the effects of different faults are similar, they may result in
similar sensors’ measurements). However, different approaches have also been
proposed.

Farley et al. [30] introduced an approach which simulates, for an idealised 24 h
period, leaks/bursts at all possible locations in a DMA (i.e. as an emitter at all the
nodes of the relevant hydraulic model) and subsequently builds a matrix with rows
corresponding to the possible leak/burst points and column corresponding to possi-
ble monitoring points. Each element of this matrix contains the sum, ∑X2 (over the

24 h period), of instantaneous chi-squared values computed as X2 ¼ Plc�Pnð Þ2

Pn
, where

Plc is the simulated pressure recorded under leak/burst conditions and Pn is the
simulated pressure recorded under normal conditions. A threshold computed as the
mean of the matrix is then applied to each value in the matrix to map those values to
zeros (i.e. leak/burst undetected) and ones (i.e. leak/burst detected) by simply
checking whether the specific ∑X2 is less or greater than the threshold, respectively.
The column with the largest number of ones is considered as the most sensitive
sensor location. The authors expanded this methodology to determine the best
combination of two sensor locations by using a complete enumeration procedure
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of all possible pairings of locations. They tested their method on two UK DMAs with
different geometries assuming a perfect model and no measurements noise. Through
comparison with the leak/burst detection performance of already installed instru-
mentation (according to UK standard practices), they demonstrated that the optimal
location(s) identified using their method enable detecting a higher percentage of
simulated leak/burst events. The authors noted however that the threshold selection
is cause of concern as, if obtained from the simulation of large leaks/bursts, smaller
events may not be detected. Of particular importance is the fact that, in a later study
[33], the authors conducted a set of field trials to evaluate their approach. These field
trials simulated five different leak/burst events through the opening of fire hydrants
within a selected DMA. By installing pressure instrumentation at different locations
in the DMA, an understanding of how accurately the model methodology can
determine sensitivity of instrument location was obtained. Indeed, the results showed
that pressure instrumentation location is crucial to sensitivity and that their model-
ling methodology was able to predict instrument location sensitivity to leak/burst
events reasonably well.

Farley et al. [11, 34] built on the work carried out in [30, 33] and proposed to
search the sensitivity matrix to achieve selective sensitivity to events in different
network areas. By doing this, their approach enabled providing useful leak/burst
localisation information by subdividing a DMA in smaller detection zones. The main
differences from the work presented in Farley et al. [30, 33] are that a genetic
algorithm (GA – see, e.g. [35]) is used to improve the search efficiency when
identifying the best sensor locations and an uncertainty band is applied to either
side of the threshold to (somehow) account for a certain degree of model/measure-
ments uncertainty. The single objective function of the GA search aims to identify
combinations of instruments that provide an even division of the DMA and to
minimise the number of nodes within the penalty zone (i.e. a zone whereby a
response within the uncertainty band is produced at one or more instruments). The
authors presented results from field tests using hydrant flushing to simulate leak/
burst events in real DMAs. The field tests’ results demonstrated the practical
applicability of the method, showing that by combining quantification of differential
sensitivities with event detection techniques for data analysis (i.e. [12, 13]), events
can effectively be localised using a small number of instruments (i.e. taking into
account existing instrumentation and one or two additional pressure sensors). How-
ever, it was noted that the effectiveness of the localisation method was dependent on
where in a DMA a leak/burst event occurs (e.g. event near a DMA inlet are likely to
be missed) and, most importantly, that the method only works if all the considered
instruments are working and the event detections from all the sensors’ data agree
with what the model expects to happen (i.e. an incorrect or uncertain detection even
at a single sensor location would cause the method to indicate an incorrect leak/burst
search area).

Pérez et al. [31] proposed a sensor placement method conceptually similar to the
one presented in Farley et al. [30]. This method is based on computing and analysing
the differences (i.e. residuals) between the pressure measurements at the sensor
locations following a leak/burst and their estimations obtained using a hydraulic
model. The basic idea is that the values of these residuals for a particular leak/burst
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can be seen as that leak/burst signature. The calculated residuals are then evaluated
against a threshold (that may be selected to take into account the measurement noise
and model uncertainty – [36]). If a residual violates the threshold (for a given time
window, in the general case) then, the leak/burst isolation process is initiated. The
isolation process is based on comparing the residuals against the leak/burst sensitiv-
ity matrix, S(k), that contains the effect of each possible leak/burst on the available
pressure measurements at the sensor locations. A mathematical representation of the
sensitivity matrix is shown in Eq. (1) [29]:

S kð Þ ¼

pf 1
1 kð Þ � p1 kð Þ

f 1
� � � pf m

1 kð Þ � p1 kð Þ
f m

⋮ ⋱ ⋮
pf 1

n kð Þ � pn kð Þ
f 1

� � � pf m
n kð Þ � pn kð Þ

f m

2
666664

3
777775

ð1Þ

where p
f j

i kð Þ is the pressure of sensor i at the time instant k when a leak/burst with
constant flow, fj, is present at node j, m is the number of nodes in the network
(possible leak/burst locations – if leaks and burst are assumed as occurring at nodes),
n is the number of sensors in the network and pi(k) represents the pressure of sensor
i at the time instant k without the presence of a leak/burst in the network. The
candidate leaks/bursts are those whose effect matches the best (when compared
using some metric) with the observed residuals. In this study the authors proposed to
normalise (i.e. divide each row by the maximum value of that row that corresponds
to the leak/burst most important for that node) and then binarise the sensitivity
matrix in order to be used as a leak/burst signature matrix (i.e. set of all the leak/
burst signatures). The threshold used to evaluate the residuals and to binarise the
sensitivity matrix was identified by looking at the trade-off between the number of
unique signatures present in the binarised sensitivity matrix and the number of leaks/
bursts with the same signature. The authors used a GA-based optimisation to find the
location of sensors that minimises the maximum number of possible leaks/bursts
with a particular signature (i.e. maximise isolability) for a pre-specified number of
sensors. This method was tested using the hydraulic model of a real WDS, Placa del
Diamant, in the Barcelona WDS. Here the authors simulated leaks/bursts as a single,
constant demand that can appear in any node, considered a single time step k,
assumed the availability of a perfect hydraulic model (e.g. no model uncertainty)
and did not account for measurements noise. Subsequently, however, Pérez et al.
[37] repeated their experiments considering multiple time steps (i.e. a particular time
step during the night-time period for 15 days – they introduced a voting mechanism
to then assign a leak/burst to a particular group of nodes) and uncertainty in the nodal
demands. The authors found that, independently by the presence (or absence) of the
added uncertainty, their approach required to recalculate new sensitivity matrices
every day – because these matrices are strongly affected by the changing boundary
conditions and total consumption. Furthermore, they found that localisation perfor-
mance strongly decreases when nodal demand uncertainty is introduced, in addition
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to different sensor placement configurations being identified as “optimal” despite
using the same number of sensors.

One of the main issues in the work presented in Pérez et al. [31, 37] is the
threshold selection. Furthermore, even with an optimal threshold selection,
binarising the sensitivity matrix leads to a loss of information [38]. Therefore,
aiming at circumventing these issues, Casillas et al. [39] formulated the optimal
sensor placement problem as an integer optimisation problem based on projections
from a non-binarised leak/burst sensitivity matrix solved with a semi-exhaustive
search or a GA. The projection-based method used in this study (i.e. angle method) is
based on evaluating the angle between the vector of the “actual” residuals and every
column (i.e. possible leak/burst nodes) of the leak/burst sensitivity matrix. The
“actual” leak/burst node is then identified by looking at the column (sensitivity
matrix vector) that presents the smallest angle with the residual vector. This method
was first proposed by Casillas et al. [29] for the sole purpose of leaks/bursts
localisation. It was then compared in that study and in Casillas et al. [9, 10] against
other ways of using the leak/burst sensitivity matrix to isolate/localise a leak/burst
(including the binarisation method proposed by [31] and the correlation method
presented in [38] and in [40]), and, through tests on small synthetic networks and on
a real-life network (i.e. Nova Icaria, in the Barcelona WDS), it was found to offer
better localisation performance than the other tested methods. With specific regard to
the method used for solving the integer optimisation problem, the authors evaluated
the performance of a semi-exhaustive search, which uses a lazy evaluation mecha-
nisms to reduce the computation cost by discarding potential sensor configurations
as soon as it is found that they cannot be candidates for the optimum solution, against
the performance of a GA on the Hanoi network (see [41]) and on a relatively small
real-life network in Limassol, Cyprus. They found that the semi-exhaustive search
would not scale up well to bigger networks, whereas the GA allowed the finding of
good near-optimal solutions in a computationally efficient manner. Bearing all this
in mind, it is important to stress that Casillas et al. [39] also proposed improving the
robustness of their sensor placement methodology by (1) carrying out a time horizon
analysis (which, by performing an extended-horizon analysis of pressure sensitivi-
ties and residuals and then looking at the mean projection, can reduce the sensitivity
to demand changes and noise in the measurements observed when using methods
that consider a time instant evaluation only – see, e.g. [9, 10]), (2) using a distance-
based scoring during the optimisation process (which, by accounting for the topo-
logical distance between the “actual” leak/burst node and the node indicated by the
projection-based method, attempts to retain more information than the traditional
binary scoring process would in the case of leaks/bursts incorrectly localised – as all
the incorrectly localised leaks/bursts are treated in the same way), (3) incorporating
sets of sensitivities and residuals in their evaluation function that are computed
considering different leak/burst sizes and (4) adding noise to the model pressures
before computing the residuals to simulate measurements noise. Through compar-
ison of the results obtained on the Limassol network with and without considering
the proposed improvements, the authors found that leak magnitude changes
were impacting the resulting optimal sensor placement found in the case of no
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improvements, requiring a post-treatment analysis to tackle such a problem, whereas
considering the improvements enabled them to avoid any post-treatment analysis.

Sarrate et al. [42] proposed a sensor placement method based on an extension of
the work done, although not focusing on WDSs specifically, in Rosich et al.
[43]. This method takes into account maximum diagnosability (i.e. leak/burst
isolability and detectability maximisation) specifications for a specific number of
sensors to be installed. The strategy is based on the structural model of a WDS. A
structural model is a coarse model description, based on a graph representation of the
analytical model structure whereby only the relationship between variables and
equations is taken into account, while the mathematical expression of this relation-
ship is neglected. Because of this an efficient graph-based method (i.e. depth-first
branch and bound search algorithm) was applied to solve the sensor placement
problem. Bearing this in mind, it is important to stress that, due to the coarse nature
of a structural model, the diagnosis performance obtained using such a model cannot
be guaranteed for the real WDS. Considering only a small subset of nodes as
potential sensor locations, the authors applied their method to a DMA in the
Barcelona WDS and demonstrated the feasibility of their approach. However, in a
later study [44], the author stated that, because of the size and the complexity of the
optimal sensor placement problem in real-life WDSs, the applicability of the method
proposed in Sarrate et al. [42] is limited to small-/medium-sized networks. There-
fore, they attempted to reduce the size and complexity of the problem by combining
their structural model-based method with clustering techniques. Clustering tech-
niques enable the unsupervised classification of patterns (observations, data items or
feature vectors) into groups (clusters) and have been used to solve various
problems in different domains [45]. Specifically, a k-means clustering technique
(see – e.g. [46]) was used in that study as a pre-processing step to reduce the number
of candidate sensor locations before solving the sensor placement problem proposed
by Sarrate et al. [42]. Aiming at grouping together nodes that respond in a similar
manner to leak/burst events, the authors built a fault sensitivity matrix as done in
Pérez et al. [31]. However, they did not binarise that matrix but used the cosine
distance on the residuals for the k-means algorithm. As a result, the number of
candidate sensor locations to be used in the depth-first branch and bound search
algorithm was reduced by selecting only one candidate sensor location (i.e. the
nearest to the cluster centroid) from each cluster. In this study, the authors tested
their method on the same DMA used in Sarrate et al. [42], simulated leaks/bursts as a
single, constant demand that can appear at selected (in order to limit problem
complexity) nodes, assumed the availability of a perfect hydraulic model and did
not account for measurements noise. Of particular note in this study is the fact that
the authors stated that although it might seem appealing (in order to reduce compu-
tational efforts) to skip the branch and bound step and directly apply the clustering
step to obtain the final sensor configuration, such an approach may lead to
suboptimal results as “only a reduced set of directional residuals (the primary
residuals) are represented in the fault sensitivity matrix according to the simulation
method used”. That statement was then validated in a following study by the authors
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[47] where, however, it was also noted that results from the direct application of the
clustering step were not too far from the global optimum.

Bearing in mind the above, in order to overcome the aforementioned intrinsic
limitation of their structural model-based strategy, Sarrate et al. [47] proposed a
further approach based entirely on analysis of the leak/burst sensitivity matrix. In
this study, projections are calculated from the sensitivity matrix, a “leak locatability”

index (to be maximised for the specific number of sensors to be installed) is
introduced, and a two-step hybrid methodology that combines clustering techniques
(the evidential c-means algorithm was used in that study – see [48]) with an
exhaustive search is utilised to search for the optimal sensor configuration. Again,
the authors tested their method on the same DMA used in Sarrate et al. [42] and
conducted their experiments with settings very similar to those used in that study. It
was found that their further approach enables solving the optimal sensor placement
problem in a reasonable time. However, the authors noted that despite the exhaustive
search approach providing an optimal result, “optimality” of this result over the set
of original candidate pressure locations is strongly dependent on the performance of
the clustering algorithm.

Wu and Song [49] developed a pressure sensor placement method that maximises
the number of leak/burst events that can be detected for a given number of sensors by
performing the following two steps. Firstly, a Monte Carlo method (see – e.g. [50]) is
used to generate a large number of random events with different magnitudes and that
may occur at a single location or at two locations simultaneously. In this step, the
simulated nodal pressures are compared with the baseline condition, and residuals
are stored in a matrix. Then a binary matrix is obtained from the residuals matrix
using the sensors’ accuracy (from manufacturer’s specifications) as the threshold.
That is to say, an event is considered to be detected as long as a pressure change is
greater than the pressure sensor accuracy. In the second step, the pressure sensor
locations are optimised using a GA in the Darwin optimization framework [51] for a
given number of sensors, so that the optimised sensor locations are able to cover the
maximum number of leak/burst events. The authors tested their method on two real-
life networks considering a perfect model.

Hagos et al. [52] presented a method that attempts to mitigate the “arbitrary
threshold” selection issue present in many of the previous studies that convert the
sensitivity matrix to a binary matrix by promoting the use of statistical process
control tools. Specifically, the use of Shewhart control charts [53] and of the Western
Electric Company detection rules [54] was proposed in that study as the authors
deemed this detection approach more statistically robust, in addition to enabling up
to eight most recent past measurements rather than a single/current value/measure-
ment. The method focuses on the placement of pressure and flow sensors
independently, makes use of linear programming for the optimisation (binary integer
programming problem solved by the general reduced gradient non-linear solver – see
[55]) and was demonstrated on a modified Austin network (see [56]). In this study,
the authors looked into the issue of false alarms in determining sensor placements’
detection effectiveness and made use of the average detection time as a secondary
(given placements with the same detection effectiveness, the placement with a
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shorter average detection time is more favourable) detection efficiency indicator.
With specific regard to the issue of false alarms, the authors found that maximising
the rate of correct event detections and minimising the rate of false alarms are
contradictory goals and the best detection locations are not likely to be the best
locations for minimising the rate of false alarms. Furthermore, they found that, as the
number of sensors in the DMA increases, both the rate of correct event detections
and the rate of false alarms increase.

Huang et al. [57] developed a clustering-based pressure sensor placement
method for pipe burst detection. They used a fuzzy self-organising map neural
network (see – e.g. [58]) due to its capability to classify the inputs without knowing
the number of clusters in advance and, hence, with the capability of enabling to
determine the optimal number of pressure sensors required. In this method, the nodes
in a WDS/DMA are grouped according to their similarity in responding to the
change of node demands due to leaks/bursts. A small real-world network was used
to demonstrate the effectiveness of the method. Here, the authors simulated leaks/
bursts as a single, constant demand, considered a single time step (i.e. the hour of
maximum daily water consumption), assumed the availability of a perfect hydraulic
model and did not account for measurements noise. Because of the limited verifica-
tion of the methodology carried out in this study, it is difficult to assess the value of
the proposed method. Bearing this in mind, it is also important to stress that the
authors stated that setting the parameters of the self-organising map neural network
properly is not a trivial task and further investigations into this issue are required if
this method is to be used by water companies.

Candelieri et al. [59] proposed a method that makes use of (1) a graph-based,
spectral clustering procedure (see – e.g. [60]) of similar variations in pressure and
flow induced by leaks/bursts simulated using a hydraulic model and (2) support
vector machines classification (see – e.g. [61]) to learn the relationship between the
variations in pressure and flow at the deployed sensor locations and the most
probable set of pipes affected by a leak/burst (i.e. to learn to approximate the
non-linear mapping performed by the spectral clustering procedure and estimate
the most probable cluster which an “actual” vector of variations in pressure and flow
would belong to). They run several leak/burst scenarios by varying leak/burst
location and magnitude, assuming the availability of a perfect model and perfect
sensors’ measurements. They proposed to use a “localisation index” measure [62]
and a novel “quality of localisation” measure to evaluate the quality of the identified
clusters. The authors looked at the simultaneous deployment of pressure and flow
sensors by introducing a simple measure of cost (i.e. the cost of a flow sensor is ten
times the cost of a pressure sensor). They demonstrated the capabilities of their
method by applying it to the study of the optimal sensor locations for a real-life
DMA in Timisoara, Romania.

Boatwright et al. [63] proposed a novel combined sensor placement – leak/burst
localisation methodology based upon a spatially constrained version of the inverse
distance weighted geospatial interpolation technique (see [64]) that aims at ensuring
that optimal sensor locations (with respect to the leak/burst localisation
technique used) are selected. The proposed methodology makes use of the

Review of Techniques for Optimal Placement of Pressure and Flow Sensors. . . 37



GALAXY multi-objective evolutionary algorithm [65] to identify the optimal
location of pressure sensors in the DMA given a specified number of sensors.
Similarly to the work presented in Farley et al. [30], the first step for solving the
optimal sensor placement problem involves hydraulic modelling of leaks/bursts at all
nodes and building a matrix containing instantaneous chi-squared values (as only a
single time step was considered in this study). These chi-squared values are then
used for building various interpolation surfaces during the optimisation step, which
aims at maximising (using an objective function also based on the spatially
constrained inverse distance weighted interpolation technique and a threshold that
defines the leak/burst search area on an interpolation surface) the localisation
performance of each configuration of sensors for every leak/burst being modelled.
After determining the optimal sensors configuration by looking at the results of the
optimisation step, the spatially constrained inverse distance weighted interpolation
technique is used again to calculate the approximate location of an “actual” leak/
burst occurring in a DMA (once a leak/burst has been identified or is suspected)
based on the “actual” pressures measured at the sensor locations. The authors
considered a perfect model and perfect sensors’ measurements and tested their
method on a small synthetic network from the literature, the Bakryan benchmark
WDS (see [66]). Despite the limited testing/validation of this method, it is worth
highlighting one of the potential benefits of the approach proposed in this work,
namely, the use of spatially constrained geostatistical techniques. Generally speak-
ing, geostatistical techniques have the potential to limit the number of instruments
which are deployed in a DMA as they can estimate the values of parameters at
locations which are not measured based on the measurements from nearby sensors
and, hence, to enable higher leak/burst localisation performance to be achieved for a
given number of sensors. The use of geostatistical techniques for leak/burst
localisation was already proposed by Romano et al. [15] with encouraging results.
However, the use of a spatially constrained version of the inverse distance weighted
interpolation technique proposed in Boatwright et al. [63] enables the overcoming of
the obvious limitation of using the Euclidean distance instead of the pipe length
between the estimation locations and the instrument locations (i.e. not accounting for
the actual network layout of a DMA).

3 Considerations on Specific Issues Encountered When
Developing Optimal Sensor Placement Techniques
for Leak/Burst Detection and Localisation

In this section several issues that have been considered by researchers when devel-
oping sensor placement methodologies for leak/burst detection and localisation are
presented together with details of relevant research works that have aimed at
addressing these issues.
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This section is organised as follows. Firstly, the issue of model uncertainties and
sensitivity to the leak/burst size assumed for hydraulic simulations is considered in
Sect. 3.1. Then, Sect. 3.2 focuses on the issue of uncertainties in the sensors’
measurements. Once this is done, Sect. 3.3 deals with the issues of sensor/commu-
nication failures in sensor networks. Section 3.4 examines the topic of the simulta-
neous use of pressure and flow sensors. Finally, Sect. 3.5 focuses on the issue of
accounting for risk when developing optimal sensor placement techniques for leak/
burst detection and localisation.

3.1 Model Uncertainties and Sensitivity to the Leak/Burst Size
Assumed for Hydraulic Simulations

Almost all the sensor placement algorithms for leak/burst detection and localisation
in a DMA rely on modelling a large number of leak/burst scenarios. A number of
reliable, readily available hydraulic solver packages exist (e.g. EPANET (see [67]);
PICCOLO (see [68]); AQUIS (see [69]); WaterGEMS (see [70]); OOPNET (see
[71]); etc.), which allow leaks/bursts to be modelled relatively easily. Many of the
sensor placement studies for leak/burst detection and localisation found in the
literature assume a perfect model (i.e. that reflects reality at all times). Such a perfect
model is assumed to contain up-to-date estimates of nodal demands, background
(i.e. not burst type) leaks, pipe friction factors, statuses and characteristics of valves,
pumps and other devices and any other model parameter/input values (e.g. heads in
service reservoirs) that may affect its predictions of network pressures and flows.
However, it is well known that a perfect model does not exist. In this context,
demand allocation in a hydraulic model, which requires a good characterisation of
consumers, is considered as one of the most critical issues. In addition to all this,
leaks and bursts in WDSs have a stochastic nature. The size, location, timing and
nature/type of a leak/burst event are generally unknown. However, a nominal leak/
burst size is assumed in many of the sensor placement methodologies that can be
found in the literature. This section presents a selection of studies that have
attempted to deal with these issues.

Blesa et al. [72] studied the robustness of the methodology introduced by Sarrate
et al. [47] against sensitivity matrix uncertainties by taking into account different
leak/burst magnitudes on the one hand and several operating points (although only
inflows variations were considered in this study) on the other hand. The authors
introduced a “robustness percentage” index, which is based on the “leak locatability”

index (see [47]), to assess the robustness of the selected sensor placement method-
ology. Additionally, they made use of an extended sensitivity matrix that considers
all possible leak/burst scenarios and operating point scenarios in their clustering
analysis to reduce the number of candidate sensor locations. The authors illustrated
their robustness studies by means of a simple synthetic network (note, however, that
the clustering analysis was not deemed necessary there) and the same DMA in the
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Barcelona WDS used in previous studies by the authors (i.e. [42, 44, 47]). The main
result was that the identified sensor positions are relatively insensitive to the size of
the leaks/bursts. However, variation of the “leak locatability” index can be signifi-
cant when different operating point scenarios are considered. Bearing this in mind,
aiming at accounting for this variation and ensure robust performance, Blesa et al.
[73] extended the optimal sensor placement method by Sarrate et al. [47] by
formulating a multi-objective optimisation strategy to place sensors. This strategy
has the following objectives: (1) to maximise the mean “leak locatability” index and
(2) to maximise the worst “leak locatability” index. Optimisation was carried out by
using their two-step hybrid methodology that combines clustering techniques (note
that the extended sensitivity matrix considered there encompass all possible operat-
ing point scenarios only) with an exhaustive search procedure, resulting in an
approximation of the entire Pareto front. The authors utilised again the simple
synthetic network (without clustering analysis) and the DMA in the Barcelona
WDS used in Blesa et al. [72] to test their strategy. Through comparison of the
results achieved in the Barcelona DMA with and without the use of the proposed
robust sensor placement methodology, the authors demonstrated that not to account
for different operating point scenarios leads to solutions that are not Pareto optimal.

As mentioned in Sect. 2, Casillas et al. [39] attempted to mitigate the effect of
model uncertainties and of the unknown leak/burst size by incorporating in their
method an extended-horizon analysis of pressure sensitivities/residuals and by
considering sets of sensitivities and residuals computed using different leak/burst
sizes. However, in Casillas et al. [74, 75], the authors proposed a different sensor
placement method inspired by the leak signature space-based leak/burst localisation
technique presented in Casillas et al. [76]. The leak signature space analysis enables
a specific signature to be associated to each leak/burst location that is minimally
affected by the leak/burst size. It considers a linear model approximation of the
relationship between pressure residuals and leaks/bursts to perform a transformation
that allows representing leak/burst locations by means of points in the leak signature
space that are not dependent on the leaks/bursts magnitude. The authors introduced
the concept of a domain of influence for a particular leak signature and solved the
sensor placement optimisation problem by attempting to minimise the overlapping
between domains of influence considering the signatures of all network nodes.
A time horizon analysis was also considered by looking at the mean number of
overlaps along the time horizon analysed. A GA and a particle swarm optimisation
(i.e. PSO – see [77]) algorithm were separately used to perform the optimisation. The
capabilities of the proposed methodology (i.e. efficiency, in terms of the percentage
of leaks correctly localised) were evaluated on the same two networks, Hanoi and
Limassol, considered in a previous study by the authors (i.e. [39]), assuming perfect
models but accounting for measurements uncertainties by adding Gaussian white
noise. The result obtained demonstrated that efficiencies of 100% and up to about
85% could be achieved using a small number of sensors (up to 4 and 3, respectively)
on the Hanoi and Limassol networks, respectively. They also emphasised, similarly
to what is found in Casillas et al. [39], the benefits of the time horizon analysis.
Worth of note, here, are also the results from the GA/PSO comparison that the
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authors detailed in these studies. They found that, generally speaking, PSO works
faster than the GA (being very effective for small networks or few sensors) but, when
the problem complexity increases (e.g. when more sensors are considered), the GA
tends to find placements with higher efficiency. In this regard, the authors observed
that PSO may tend to be trapped in a local suboptimum, probably because it has
memory of past successes and therefore tends to explore around those recorded
configurations; whereas when it is necessary to leap from one region of the search
space to a distant other region, crossover operations like those in a GA are probably
more effective. Finally, the authors stressed that, although relatively small networks
were used in their studies, trying to find optimal placements for larger numbers of
sensors than those detailed in their papers would be prohibitive in terms of compu-
tational time required to obtain a solution.

Steffelbauer and Fuchs-Hanusch [78] extended the work by Steffelbauer et al.
[79] in which the effect of demand uncertainty on modelled predictions of pressure
was incorporated in the optimal sensor placement problem (solved by using the
method proposed by Casillas et al. [9, 10] but adapted in order to penalise potential
sensor locations with high uncertainties) by using Monte Carlo simulation to calcu-
late pressures for multiple realisations of nodal demands. In Steffelbauer and Fuchs-
Hanusch [78], the authors solved the problem for different numbers of sensors
ranging from two to ten (the study by Steffelbauer et al. [79] was limited to four
sensors) taking into account different strengths of uncertainties. One of the main
findings was that incorporating uncertainties leads to very different optimal place-
ments than without uncertainties. Indeed, without uncertainties the algorithm tended
to place sensors in regions with high demand uncertainties spread over the whole
system. With high strength uncertainty, on the other hand, the sensors tended to be
clustered “too much” in regions with low demand uncertainties, thus indicating that
points which are sensitive to leaks/bursts are also likely to be points which are most
sensitive to demand variations and, hence, not ideal locations to place sensors
at. Worth of note in this study is also the fact that the authors derived a cost-
benefit function to describe the relation between the number of sensors and the
leak/burst localisation quality. The main reason for this was to provide water
companies with a methodology to answer the question of how many sensors are
needed to identify a specific number of leak/burst scenarios correctly. They found
that the simple cost-benefit function they derived follows a power law. That is to say,
for a linear improvement of the localisation quality, the number of sensors has to
double. Furthermore they observed that the power law behaviour still applies even if
demand uncertainties are accounted for. The only difference to simulations without
uncertainties is that the localisation quality for a placement with a particular number
of sensors decreases as the strength of the uncertainty increases.

A further interesting investigation into the issue of demand uncertainty can be
found in Puleo et al. [80]. In this study, the authors proposed an “identifiability
analysis” [81] method that makes use of the Fisher information matrix to select
points that are sensitive to leaks/bursts and also provide less correlated measure-
ments under uncertain demands. They performed Monte Carlo simulations whereby
demand was randomly drawn from a normal distribution and, through limited tests
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on a small synthetic network (i.e. Apulian – see [82]), found that their method was
not affected by the demand uncertainties.

3.2 Measurement Uncertainties

Pressure and flow sensors are the primary devices to monitor WDSs, and data
coming from these devices can potentially enable timely and reliable leak/burst
event detection and localisation. However, these sensors are subject to measurement
errors associated with any measuring device. Differences between measured and
expected data are at the core of many optimal sensor placement techniques. As
uncertainties in using measured values due to the possible range of errors for these
devices exist, the difference between measured and expected data must exceed the
measurement error to be considered an “anomaly”. In this context, “anomalies”
caused by small leaks/bursts may be difficult to identify. Furthermore, as leaks/
bursts may occur at any location in a network, a leak/burst occurring farther away
from a sensor may result in small variations in the signal recorded by that sensor. In
view of all this, it is important to investigate if sensor placements obtained using
assumptions of perfect sensors’ measurements would perform suboptimally when
implemented in real-life WDSs.

A small number of studies found in the literature have considered the sensors’
accuracy as a key component of their methodology. For example, Wu and Song [49]
and Forconi et al. [83] used the sensors’ accuracy as a threshold to discriminate
between detections and non-detections. A few other studies have attempted to build
robustness to measurements uncertainties by accounting for noisy measurements in
their optimal sensor placement frameworks (e.g. [39, 75]). The work by Raei et al.
[84], on the other hand, attempted to investigate this issue as its primary aim. The
authors proposed to solve the sensor placement problem by using a multi-objective
optimisation framework. They explored the effect of measurements uncertainty on
the selection of sensor locations by identifying alternative non-dominated fronts for
different values of sensor accuracy and then selected the final sensor placement from
those non-dominated fronts. The sensor placement problem formulation presented in
this study is based on sensitivity to leaks/bursts that are simulated at all potential
nodes in a network (note that the absolute error is used in this study) and solved
using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II – see [85, 86]) to
explore trade-offs between the minimisation of the number of sensors to be deployed
and the detection time (i.e. from leak/burst start time to the time at which one sensor
out of the set of sensors registers a pressure difference that is larger than an error
threshold) objectives. The authors tested their approach on the C-town (see [87])
synthetic network considering a perfect model. The result obtained showed that the
detection times increase as the sensor accuracy decreases. However, the sensor
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uncertainties did not seem to greatly affect the placement of the sensors. Worth of
note in this study is also the fact that the authors proposed to simulate leaks/bursts
that start at different times during the day by discretising the demand patterns into
four clusters. Bearing in mind that the authors stressed that this discretisation was
only necessary to mitigate the computational burden that would be faced if leaks/
bursts were allowed to start at every time step of a hydraulic simulation, their attempt
to account for more realistic leak/burst modelling assumptions is valuable and
highlights a further source of uncertainty that has been somehow neglected by
optimal sensor placement studies.

3.3 Sensor and Communication Failures

Sensor networks are exposed to failure conditions, such as sensor malfunctions and
communication system failures. In the current hyperconnected world, for example,
cyberattacks are now a major risk for sensor and communication malfunctions/
failures [88]. Therefore, a sensor network’s robustness should be considered for
the reliable provision of informative sensor data. A sensor network’s robustness
should be considered at the design stage because the overall information gain and,
hence, the effectiveness of the sensor network should be assessed as a whole.
Despite the information gain varies for different locations, information gains from
data collected at some locations can compensate for those at other locations [89].

The vast majority of optimal sensor placement methods that can be found in the
literature have assumed that all sensors perform without any failure. However, this
assumption is not realistic and may result in the design of a sensor network that
performs poorly when the network is partially impaired (e.g. a sensor fails).

In the above context, Jung and Kim [89] proposed a leak/burst detection approach
similar to that proposed by Hagos et al. [52] but that builds on that work by (1) using
the NSGA-II for multi-objective optimal sensor placement and, most significantly,
by (2) introducing a further criterion in that optimisation, namely, the maximisation
of the robustness of a sensor network given a predefined number of sensors. The
authors defined the sensor network’s robustness as its ability to consistently provide
quality data in the event of sensor failure. Individual sensor failures were considered
in that study, and a coefficient of variation of the rate of correct detections in the
event of a sensor failure was used to assess the variation in performances of the
subsets of a given set of sensors. The authors tested this method on the same
synthetic network used in Hagos et al. [52], performed experiments with very similar
settings and considered a similar number of pressure and flow sensors to be inde-
pendently deployed. By accounting for robustness of a sensor network, quite
different sensor placements were proposed, thereby confirming that a sensor net-
work’s robustness should be considered at the sensor network’s design stage.
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3.4 Use of Flow Sensors

While pressure sensors are still cheaper than flow sensors, the price difference has
considerably lowered over the past years. For example, collecting flow data is now
possible via insertion sensors using through bore hydrants (which, however, typi-
cally have lower accuracy than the full bore electromagnetic flow sensors normally
used at a DMA inlet). Through the use of insertion sensors, the costs for excavation,
pipe cut-out, installation of valves, backfilling and pavement work and the potential
need to temporary decommission parts of the WDS can be avoided. Bearing this in
mind, flow and pressure sensors in WDS work differently. Flow measurements are
sensitive to all downstream changes, while pressure measurements are sensitive to
additional head loss on the flow route to them – thus generally more sensitive to
events local to the instrument, both up and down stream of the instrument. Flow data
is also generally via pulse counting systems providing an average value over a time
period (e.g. 15 min) generating smoothed data with good confidence, while pressure
data is generally an instantaneous value including noise and variability
[14, 90]. Therefore, using additional flow instrumentation should hypothetically
improve the performance of optimal sensor placement methods that only use addi-
tional pressure sensors. However, in the literature there has been less analysis of the
simultaneous optimisation of the locations of both pressure and flow sensors for
leak/burst event detection and localisation.

In the above context, worth of mention is the work by Imschoot et al. [91]. The
authors utilised an approach very similar to that presented in Farley et al. [30, 33] for
event detection and in Farley et al. [11, 34] for achieving selective sensitivity.
However, they incorporated data from not only pressure but also flow sensors to
detect and localise leaks/bursts. The authors populated two sensitivity matrices, one
for flow and one for pressure, used an absolute error rather than a chi-squared
formulation (as the latter is not applicable to simulated flow measurements that
could be null or negative) and considered a more conservative (than using an
uncertainty band) safety factor that simply shifts the threshold (the mean of the
values in each sensitivity matrix) used to binarise the matrices to a higher limit. They
then performed a complete enumeration search of these matrices using a fitness
function that aims at finding optimal solutions for the placement of one or two
additional sensors that results in similarly sized subdivided areas. The authors tested
their method on two UK DMAs assuming a perfect model and no measurements
uncertainty and found that (as a general tendency) placing optimal flow sensors plus
the inlet flow sensor seems to provide better results than the flow sensor at the DMA
inlet with optimally placed pressure sensors.

Findings similar to those reported by Imschoot et al. [91] have also been recently
presented in Raei et al. [92] whereby the authors observed that, despite the use of
pressure sensors having clear benefits in improving leak/burst detection rates, the
impact of pressure sensors in improving those rates diminishes quickly as the
number of flow sensors increases. Overall, these initial findings seem to suggest
that further development of sensor placement methods that attempt to
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simultaneously use pressure and flow sensors for leak/burst detection and, most
importantly, localisation is needed. However, despite what stated at the beginning of
this section with regard to costs, these methods could/should be further developed to
also account for the differences in costs and budget constraints. Bearing this in mind,
accounting for differences in costs has been attempted in studies such as those
presented in Candelieri et al. [59] and Jung and Kim [93], for example, but a more
thorough analysis framework for dealing with these issues would be beneficial to
water companies.

3.5 Accounting for Risk

A potential drawback of all the optimal sensor placement approaches reviewed so far
is that they tend to treat all leaks/bursts in the network equally – i.e. without
considering the potential impact they may have on customers, for example. In
real-life circumstances, a water company may decide to favour sensor placements
that ensure quick detection and localisation of events that may have a major impact
on nearby customers (e.g. cause local road or property damage) and especially if the
customers in question are sensitive/critical (e.g. hospitals).

In Forconi et al. [83], three different risk-based functions were used to derive
optimal placements of a given number of sensors in a WDS: a simple function based
on likelihood of leak/burst non-detection and two other risk-based functions, where
impact and exposure/vulnerability are combined with the leak/burst detection like-
lihood. The impact is measured by the effects of a leak/burst occurrence on the
demands (i.e. volume of undelivered water), while the exposure/vulnerability is
measured by the intrinsic importance of the elements that can be damaged
(by assigning higher weights to certain nodes). This method therefore enables to
take into account social, economic and/or safety considerations. The results obtained
showed that accounting for risk can lead to significantly different sensor placements.
In this context, the methodology proposed in this study can represent a useful tool for
the WDS’s managers for placing sensors in the network in order to not only detect
and localise leaks/bursts but to also comply with hydraulic, social and economic
requirements.

Venkateswaran et al. [94] presented a good example of work that focus on
refining the means of estimating the likelihood and impact components of risk
(i.e. one of the most important issues in risk-based approaches). In that study, the
authors proposed an approach to model and quantify the real-world impact of a leak/
burst event on a community using various geospatial, infrastructural and societal
factors. Specifically, they modelled the vulnerability of a community to flooding by
simulating the propagation of water from a leak/burst along the surrounding terrain
using a hydrodynamic flood simulation algorithm. They also partitioned the com-
munity into regions (driven by flood maps, which depend on the terrain) and
determined the relative criticality of these regions by assigning scores based on the
population density as well as the critical infrastructure (e.g. healthcare,
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transportation, government facilities, educational, etc.) present within each region.
The sensor placement algorithms they developed, however, are greedy type
(i.e. algorithms that solve the problem by placing one sensor and find the next sensor
position through incorporation of the previous one), which have been shown to be
likely to fail in finding optimal sensor placements [26, 78].

4 Discussion

Based on the literature review carried out in the previous two sections, it is possible
to state that the various optimal sensor placement techniques that have been pro-
posed by researchers have many differences but also similarities. Some studies have
focused on leak/burst detection only, while others have considered both leak/burst
detection and localisation. The optimal sensor placement problem has been formu-
lated in a number of different ways, and the proposed solutions to the problem have
involved the use of different tools such as different hydraulic solvers and different
optimisation algorithms. Even when the same hydraulic solver is used, different
modelling approaches have been taken by researchers such as accounting for the
pressure-driven behaviour of a network or not, performing extended period or single
period simulations and simulating the occurrence of leaks/bursts by using additional
demands at nodes or emitters at nodes (or on pipes). Furthermore, some studies have
attempted to deal with one or more sources of uncertainty such as demand and
measurements uncertainty, while others have assumed the availability of a perfect
model and measurements, among other things. All the proposed techniques have
been tested and demonstrated on one or more case study networks. The character-
istics of such case studies vary widely from small synthetic benchmark networks to
real-life DMAs in various parts of the world. Tests and demonstrations of the
proposed techniques have often involved numerical experiments only, but in some
cases field tests have also been carried out. Bearing this in mind, Tables 1, 2, 3 and 4
summarise the main characteristics of a number of selected publications that have
been reviewed in Sects. 2 and 3.

By scrutinising these tables and in the light of the literature review carried out in
Sects. 2 and 3, a number of considerations regarding, inter alia, the state of the art of
optimal sensor placement techniques, the potential of these techniques to help water
companies minimising the leaks/bursts’ runtime by effectively detecting and
localising these events as they occur in a DMA and the gaps in the current research
can be made. These considerations are detailed below.

Notwithstanding the individual contributions to the body of knowledge in the
field made by studies that have focused on optimal placement of pressure sensors for
leak/burst detection only, it is possible to observe that such studies have limited
value for water companies when considering the aim of minimising the leaks/bursts’
runtime. Indeed, studies such as Hagos et al. [52] noted that the majority of optimally
located pressure sensors in a network tend to detect the same set of leaks/bursts and,
thus, they provide little information on where a leak/burst may be located.
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Table 1 Main characteristics of selected publications – primary objective (i.e. leak/burst detection
or leak/burst detection and localisation) and problem formulation/solution

Detection/
localisation Problem formulation/solution

Farley et al. [30] Detection Threshold applied to the chi-squared matrix + complete
enumeration (only two additional pressure sensors
considered)

Farley et al. [11] Detection and
localisation

Threshold and uncertainty band applied to the
chi-squared matrix + optimisation using a GA

Pérez et al. [31] Detection and
localisation

Threshold applied to the leak/burst sensitivity
matrix + optimisation using a GA

Casillas et al. [39] Detection and
localisation

Angle method to analyse the leak/burst sensitivity
matrix + optimisation using a semi-exhaustive search/
GA

Sarrate et al. [42] Detection and
localisation

Structural model of a DMA + depth-first branch and
bound search algorithm

Sarrate et al. [44] Detection and
localisation

Structural model of a DMA + k-means cluster-
ing + depth-first branch and bound search algorithm

Wu and Song [49] Detection Threshold based on the accuracy of sensors + optimisa-
tion using a GA in the Darwin optimization framework

Hagos et al. [52] Detection Statistical process control + linear programming for the
optimisation

Huang et al. [57] Detection Influence coefficient matrix + fuzzy self-organising
map neural network clustering

Candelieri et al. [59] Detection and
localisation

Spectral clustering + support vector machines
classification

Boatwright et al. [63] Detection and
localisation

Spatially constrained version of the inverse distance
weighted geospatial interpolation technique + optimisa-
tion using the GALAXY multi-objective evolutionary
algorithm

Blesa et al. [73] Detection and
localisation

Projections calculated from the extended sensitivity
matrix + two-step hybrid methodology combining evi-
dential c-means clustering algorithm and an exhaustive
search

Casillas et al. [75] Detection and
localisation

Leak signature space method + optimisation using a
GA/PSO

Steffelbauer and
Fuchs-Hanusch [78]

Detection and
localisation

Angle method between the general sensitivity of
potential measurement points with respect to all possi-
ble leak scenarios and residual vectors + optimisation
using a GA

Puleo et al. [80] Detection Identifiability analysis

Raei et al. [84] Detection Threshold based on the accuracy of sensors and ranking
applied to the absolute error matrix + optimisation using
the Non-dominated Sorting Genetic Algorithm-II

Forconi et al. [83] Detection Threshold based on the accuracy of sensors + ranking
using the Max-Sum method [95]
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Furthermore, Farley et al. [11] noted that if pressure sensors were to be used solely to
detect leak/burst events, the issue of false alarms would be of concern. In that study,
the authors observed that false alarms are more common when using pressure time-
series values for detection, as pressure fluctuates much more than the flow in the
system. Similar/related observations have been made by a number of other
researchers. For example, as already mentioned in Sects. 2 and 3, Hagos et al. [52]
observed that the best pressure sensor locations for detection are not likely to be the

Table 2 Main characteristics of selected publications – hydraulic solver used, demand-/pressure-
driven formulation, use of single/extended period simulations and choice of leak/burst simulation
method

Hydraulic
solver used

Demand-/
pressure-driven

Single/
extended
period

Leak/burst
simulation
method

Farley et al. [30] AQUIS Not mentioneda Extended
period

Emitter at nodes

Farley et al. [11] AQUIS Not mentioneda Extended
period

Emitter at nodes

Pérez et al. [31] PICCOLO Demand-driven Single period Additional
demand at nodes

Casillas et al. [39] EPANET Not mentioneda Extended
period

Emitter at nodes

Sarrate et al. [42] N/A N/A N/A Not mentionedb

Sarrate et al. [44] EPANET Not mentioneda Single period Not mentionedb

Wu and Song [49] WaterGEMS Not mentioneda Not
mentionedc

Emitter at nodes

Hagos et al. [52] EPANET Not mentioneda Extended
period

Emitter at nodes

Huang et al. [57] Not
mentioned

Not mentioneda Single period Additional
demand at nodes

Candelieri et al. [59] EPANET Pressure-driven
[96]

Not
mentionedc

Emitter on pipes
[96]

Boatwright et al. [63] EPANET Demand-driven Single period Emitter at nodes

Blesa et al. [73] EPANET Not mentioneda Not
mentionedc

Emitter at nodes

Casillas et al. [75] EPANET Not mentioneda Extended
period

Emitter at nodes

Steffelbauer and Fuchs-
Hanusch [78]

OOPNET Not mentioneda Not
mentionedc

Emitter at nodes

Puleo et al. [80] EPANET Not mentioneda Not
mentionedc

Emitter in the
middle of pipes

Raei et al. [84] EPANET Demand-driven Extended
period

Emitter at nodes

Forconi et al. [83] EPANET Pressure-driven Extended
period

Emitter in the
middle of pipes

aAssumed demand-driven
bAssumed emitter at nodes
cAssumed single period
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Table 3 Main characteristics of selected publications – accounting for model uncertainty,
measurements uncertainty and choice of using a single leak/burst size or multiple leak/burst sizes
in the proposed optimal sensor placement frameworks

Model uncertainty
Measurements
uncertainty

Leak/burst magnitude –

single/multiple

Farley et al.
[30]

No No Multiple – but one at a
time

Farley et al.
[11]

No No Single

Pérez et al.
[31]

No No Single

Casillas
et al. [39]

No Yes – incorpo-
rated in the
placement
method

Multiple – incorporated in
the placement method

Sarrate et al.
[42]

No No Single

Sarrate et al.
[44]

No No Single

Wu and
Song [49]

No No Multiple – performed
Monte Carlo simulations

Hagos et al.
[52]

Yes – demand uncertainty; intro-
duced as random noise

No Multiple – considered the
emitter discharge coeffi-
cient as a random variable

Huang et al.
[57]

No No Single

Candelieri
et al. [59]

No No Multiple – varying in a
given range

Boatwright
et al. [63]

No No Single

Blesa et al.
[73]

Yes – inflows variations; incor-
porated in the extended sensitivity
matrix

No Multiple – varying in a
given range

Casillas
et al. [75]

No Yes – incorpo-
rated in the
placement
method

Multiple – incorporated in
the placement method

Steffelbauer
and Fuchs-
Hanusch
[78]

Yes – demand uncertainty;
performed Monte Carlo simula-
tions and used 4 different strength
of uncertainty

No Single

Puleo et al.
[80]

Yes – demand uncertainty;
performed Monte Carlo
simulations

No Single

Raei et al.
[84]

No Yes – incorpo-
rated in the
placement
method

Multiple – varying in a
given range

Forconi
et al. [83]

No No Single
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best locations for minimising the rate of false alarms and that, as the number of
pressure sensors in the DMA increases, the rate of false alarms increases, thus
exacerbating the problem; Steffelbauer and Fuchs-Hanusch [78] stated that pressure
sensor locations that are sensitive to leaks/bursts are also likely to be locations that
are most sensitive to demand variations and, hence, not ideal locations to place
sensors at. Mounce et al. [14] also reported that flow signals are much more reliable

Table 4 Main characteristics of selected publications – details of the case study network(s) and
methodology validation through field trials

Case study network(s) Field validation

Farley et al. [30] 2 � real-life:
Dendritic UK DMA – 260 nodes
Looped UK DMA – 86 nodes

No

Farley et al. [11] 14 � real-life:
UK DMAs – 204–1,091 nodes; ~6.3–36 km of pipes

Yes – simulated
bursts in 3 DMAs

Pérez et al. [31] Real-life: Placa del Diamant, Barcelona WDS, Spain
– 1,600 nodes; ~41 km of pipes

No

Casillas et al. [39] Synthetic: Hanoi, Vietnam – 31 nodes; 34 pipes
Real-life: Limassol, Cyprus – 197 nodes; 239 pipes

No

Sarrate et al. [42] Real-life: DMA, Barcelona WDS, Spain – 883 nodes
(31 considered as possible sensor locations);
927 pipes; ~17.4 km of pipes

No

Sarrate et al. [44] Real-life: DMA, Barcelona WDS, Spain – 883 nodes
(311 considered as possible sensor locations,
31 clusters); 927 pipes; ~17.4 km of pipes

No

Wu and Song [49] 2 � real-life:
UK DMA – 1,321 pipes
United Arab Emirates – 86 pipes

No

Hagos et al. [52] Synthetic: modified Austin – 125 nodes; 90 pipes No

Huang et al. [57] Real-life: DMA – 77 nodes; 108 pipes No

Candelieri et al.
[59]

Real-life: Timisoara, Romania – 335 nodes; ~4 km of
pipes

No

Boatwright et al.
[63]

Synthetic: Bakryan – 35 nodes; 58 pipes; ~102 km of
pipes

No

Blesa et al. [73] Synthetic: small benchmark – 12 nodes; 17 pipes;
~102 km of pipes
Real-life: DMA, Barcelona WDS, Spain – 883 nodes
(311 considered as possible sensor locations,
25 clusters); 927 pipes; ~17.4 km of pipes

No

Casillas et al. [75] Synthetic: Hanoi, Vietnam – 31 nodes; 34 pipes
Real-life: Limassol, Cyprus – 197 nodes; 239 pipes

No

Steffelbauer and
Fuchs-Hanusch
[78]

Real-life: DMA – 392 nodes; 452 pipes; ~37 km of
pipes

No

Puleo et al. [80] Synthetic: Apulian – 23 nodes; 34 pipes No

Raei et al. [84] Synthetic: C-town – 388 nodes; 429 pipes No

Forconi et al. [83] Real-life: E023 DMA, Harrogate, Yorkshire, UK –

448 nodes (291 considered as possible sensor loca-
tions); 468 pipes; ~16 km of pipes

No
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for leak/burst event detection than pressure signals. In view of this, it is envisaged
that future optimal sensor placement studies should focus on simultaneously con-
sidering the possibility of detecting and, most importantly, localising leaks/bursts. In
this scenario, flow measurements (usually available at the inlet of DMAs already)
can be used first to determine detection, and the pressure instruments can then be
used to determine location in addition to provide further confidence in the detection
alarms (see – e.g. [16]) and to provide information useful for root-cause identifica-
tion (e.g. a flow increase and a simultaneous pressure decrease can indicate a leak/
burst in a DMA, whereas a simultaneous flow and pressure increase can indicate a
different issue such as a pressure reducing valve failure).

With regard to the problem formulation and with specific focus on the use of
hydraulic simulation packages, it is possible to state that using hydraulic models to
simulate a large number of leak/burst scenarios and then (somehow) analysing the
differences between the simulated pressures under leak/burst conditions and the
simulated pressures recorded under normal conditions are common practices
among researchers and, possibly, the only way forward. Methods that have
attempted to avoid using hydraulic models such as the structural model-based
approach proposed by Sarrate et al. [42, 44] have intrinsic limitations (see Sect. 2)
that make their use difficult for effectively solving the optimal sensor placement for
leak/burst detection and localisation problem. Therefore, it is clear that numerical
models are instrumental to the future of cost-effective monitoring of WDSs for leak/
burst detection and localisation purposes. Unfortunately, the numerous sources of
uncertainty associated with such an approach remain a key concern. Temporarily
ignoring these issues here together with issues related to increasing the complexity of
the problem formulation (and, hence, the computational burden), as they will be
discussed in further detail below, it is envisaged that more realistic modelling
practices should be taken into consideration during the development of optimal
sensor placement methodologies in the future. For example, it may be beneficial to
use pressure-driven modelling rather than demand-driven modelling as leaks and
bursts may induce pressure-deficient conditions in a network under certain circum-
stances. Additionally, better leak/burst localisation performance may be achieved by
more realistically simulating leaks and bursts, which may occur at any point along
the pipe (and not at nodes, as commonly done) and start at any time during the day.

With specific focus on the analysis of the differences between the simulated
pressures under leak/burst conditions and the simulated pressures recorded under
normal conditions, it is possible to observe that the development of different
approaches for performing this particular task has attracted the attention of a large
number of researchers. Generally speaking, binarisation of the residuals/sensitivity
matrix (e.g. [11, 30, 31, 49]) has been recognised as leading to a loss of information
[38]; therefore methods that make full use of the hydraulic simulation results
(e.g. [39, 63, 73, 75, 78]) should be preferred. Many of the latter methods have
been developed with the aim of addressing issues related to model, measurements
and leak/burst size uncertainties, and they are very valuable for future research. The
main findings from these studies have shown that different operating point scenarios
and demand uncertainties may significantly affect the performance of “optimal”
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sensor placements if these factors are not carefully accounted for in the sensor
placement methodologies. On the other hand, measurements uncertainties and
uncertainties related to the leak/burst size have a much lesser impact on the optimal
sensor placements. Having said this, it is envisaged that the influence of other model
uncertainties such as uncertain pipe friction factors and other model-reality diver-
gences on optimal sensor locations should be explored further.

With specific focus on the methods used to solve the optimal sensor placement
problem, it can be observed that the optimal sensor placement problem has been often
solved through optimisation. Complete enumeration techniques (see – e.g. [30]) or
semi-exhaustive search routines utilising a lazy evaluation mechanisms to reduce the
computational cost (see – e.g. [39]) have clearly shown not to scale up well as the
number of sensors to be deployed, the size of the studied network and the complexity
of the problem formulation, among the others, increase. GA, on the other hand, has
shown the potential to be efficiently used to solve carefully formulated problems in
small- to medium-sized networks. They have also been shown to outperform algo-
rithms such as PSO in terms of quality of the sensor placements obtained (see
[74, 75]). However, given the extremely large solution spaces which are typically
present when real-life networks and assumptions are considered, their limitations in
terms of the computational time required to obtain a solution (by not just exploring a
small part of the total solution space) have also been highlighted by several
researchers (see – e.g. [74, 75, 78]). Notwithstanding the fact that several researchers
have attempted to reduce the size of the solution spaces/complexity of the optimisa-
tion problem using clustering techniques (as discussed in further detail below), it is
envisaged that experiments with other, potentially more efficient, optimisation tech-
niques should be carried out. Having said this, another relevant issue highlighted by
researchers is the need for accurate tuning of the GA algorithms’ parameters. There-
fore, the use of algorithms that are able to automatically adjust their hyper-parameters
such as the hybrid GALAXY multi-objective evolutionary algorithm used by
Boatwright et al. [63] may be beneficial. In addition to all this, investigations into
the possibility of using parallel computing in a multi-core processor framework and
high performance computing should be carried out to effectively enable considering
real-life networks and assumptions and obtain a solution in a reasonable (bearing in
mind that identifying an optimal sensor placement is a task that, in general, needs to
be only carried out at the sensor network’s design stage) time.

With regard to the use of clustering algorithms and as briefly anticipated in the
previous paragraph, several researchers have experimented with such methods with
the aim to reduce the size of the solution space/complexity of the optimisation
problem (e.g. [44, 73]). Valuable contributions were demonstrated in this respect,
and, thus, further investigations into the potential of such methods to help solve the
optimal sensor placement problem in an efficient and effective way should be carried
out. Bearing this in mind, clustering algorithms have also been proposed by some
researchers (e.g. [57, 59]) for solving the sensor placement problem on their own
(i.e. without coupling clustering algorithms with GAs/semi-exhaustive search rou-
tines/etc.). Such an approach has been criticised by Sarrate et al. [44, 47] who argue
that it may lead to suboptimal results. However, it should not be possible to
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deprecate the use of this approach based on that critique alone. Having said this, a
further concern relevant to the use of clustering algorithms on their own may be the
fact that the majority of optimally located pressure sensors in a network tend to
detect the same set of leaks/bursts (i.e. the observation by [52], already mentioned
above). In this regard, it could be argued that clustering algorithms, if used on their
own, may struggle to provide information useful for enabling efficient leak/burst
localisation.

Some of the optimal sensor placement methods that can be found in the literature
utilise a different method for determining the instrumentation locations and for
localising leaks/bursts (e.g. [11, 34, 91]). It is clear that this approach implies that
the resulting sensor placements will not be optimised for the chosen method of leak/
burst localisation. Therefore, it is envisaged that tightly coupled optimal sensor
placement and leak/burst localisation frameworks should be developed by
researchers in the future. Leak/burst localisation and sensor placement should be
considered together since the best placement depends on the method that is used to
localise the potential leaks/bursts and the efficiency of the leak/burst localisation
depends on the sensor placement.

Much greater attention should be paid in the future to the issue of sensor/
communication failures as this is of critical importance for the effectiveness of
optimal sensor placements for leak/burst detection and localisation. In Sect. 2, it
was noted that the use of the method proposed by Farley et al. [11, 34] would make
the task of correctly localising a leak/burst impossible if a single sensor is not
working or data are not timely received. Bearing this in mind, similar considerations
could be made for the majority of the reviewed optimal sensor placement methods
for leak/burst detection and localisation as they have been developed under the
unrealistic assumption that all the sensors perform without any failure at all times.
In this context, the methodology proposed by Boatwright et al. [63] may offer a
potentially appealing way to mitigate the issue under scrutiny. Indeed, geostatistical
interpolation techniques are less reliant on the availability of data from all the
optimally deployed sensors when performing leak/burst localisation than methods
that are based on assessing the similarities between the observed residuals and the
results of hydraulic simulations, for example. Based on similar arguments, it may be
possible to state that the use of geostatistical interpolation techniques could also be
beneficial for mitigating some of the issues that arise because of model and mea-
surements uncertainties. Indeed, a resulting interpolation surface created by using
observed pressure measurements (which provides inferred values of pressure at
every point in a network) attempts to mimic the results of a hydraulic simulation
but without the reliance on an accurate hydraulic model/good measurements fed into
a hydraulic model.

Methods for the optimal placement of pressure and flow sensors simultaneously
should also be the focus of further research and development in the future. This is
because early studies (e.g. [91]) have indicated that using additional flow instru-
mentation can improve the leak/burst detection and localisation performance of
optimal sensor placement methods that only use additional pressure sensors.
Due to the higher costs associated with obtaining flow measurements, however,
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these methods could/should also account for the differences in costs and budget
constraints and balance all this with the additional benefits that could be realised.

It is envisaged that optimal sensor placement methods should also account for
risk as, while detecting and localising all leaks/bursts is important, not all leaks/
bursts are equally impactful. Nowadays, the resulting potential unplanned interrup-
tions to the water supply and the damaging consequences of the leak/burst events are
tolerated to a lesser extent, and water companies are increasingly judged by the
public (and the regulatory agencies alike, where applicable) based on how well
(or otherwise) they manage contingency situations. In this context, future work on
this subject should focus on further refining the means of estimating the likelihood
and impact components of risk.

The literature review carried out in this chapter has highlighted that different
methods, the inclusion of different objectives in similar methods and even slightly
changing specific settings within the same method (e.g. incorporating different
strengths of uncertainty) lead to significantly different sensor placements. Despite
measures for the assessment of performance being found in the literature, the
majority of these measures are tailored to the particular method being proposed.
All this makes the task of assessing whether a sensor placement is better that another
sensor placement almost impossible. Bearing this in mind, optimal sensor placement
research is pressingly in need for field trials and validation, which are the only way to
understand the real value and practicality of a proposed approach. In the relevant
literature, only the studies by Farley et al. [11, 33, 34] and Fuchs-Hanusch and
Steffelbauer [97] report the results of field trials and validations. The main findings
from the field trials carried out in the studies by Farley et al. [11, 33, 34] have been
detailed in Sect. 2. These findings demonstrated the practical applicability of the
methods proposed in those studies. On the other hand, in Fuchs-Hanusch and
Steffelbauer [97], a comparison of several methods including the methods proposed
by Pérez et al. [31], Casillas et al. [39] and Steffelbauer and Fuchs-Hanusch [78] was
carried out by opening fire hydrants to simulate different leak/burst scenarios in a
real network and then assessing the leak/burst localisation capabilities of the differ-
ent methods by calculating the distance between the suggested leak/burst locations
and the opened fire hydrants. The results from the limited tests carried out in that
study showed that for different leak/burst positions, different sensor sets, mainly
those with sensors close to the leak/burst position, led to the best performance. These
quite disappointing findings cast a shadow on the real value of the various “optimal”
sensor placement methods that have been proposed so far and demonstrated using
numerical simulations only, therefore stressing even more the need for any future
optimal sensor placement study to be thoroughly field validated in real-life networks.
It is envisaged that, as a bare minimum, future optimal sensor placement studies
should include an assessment of their underlying capabilities using a set of common
quantitative metrics which may include/take inspiration by those recently proposed
by Qi et al. [98]. In this context, the use by researchers in the field of a common set of
benchmark models that cover a range of network layouts/sizes/etc. and a common set
of leak/burst scenarios could also be beneficial.
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5 Conclusions

Given that the deployment of an increased number of pressure and flow sensors in a
single DMA is becoming more common and affordable, the automated analysis of
multiple pressure and flow signals to provide useful information for efficient and
timely leak/burst detection and localisation is of paramount interest to water com-
panies. Pressure and flow measurements at some locations, however, can include
more information regarding an event than measurements at other locations. Further-
more, only a limited number of sensors can be installed in a DMA due to budget
constraints. In this context, a number of methodologies have been developed in the
last decade that aim at identifying the optimal placement of a small number of
pressure and flow sensors to capture the leak/burst effect no matter where in a DMA
the leak/burst occurs and then effectively use this information to provide reliable
detection alarms and accurately identify the approximate leak/burst event’s location.
A comprehensive review of these methodologies has been carried out and presented
in this chapter. After the introduction in Sect. 1, a synthesis and analysis of relevant
published work have been presented in Sect. 2. Then, specific issues encountered by
researchers when developing optimal placement of sensors for leak/burst detection
techniques have been discussed in Sect. 3 together with different approaches pro-
posed to solve these issues. Finally, Sect. 4 has presented considerations regarding,
inter alia, the state of the art of optimal sensor placement techniques, the potential of
the reviewed techniques to benefit water companies and the current research gaps.
All this has enabled us drawing a number of conclusions, the most notable of which
is perhaps that the optimal sensor placement for leak/burst detection and localisation
problem remains unresolved despite the many efforts by researchers in the field. This
fact is exacerbated by the almost complete lack of field tests and validation of the
proposed techniques on real-life networks to enable assessing their true value and
practicality for beneficial use by water companies and the fact that comparing the
effectiveness of the different proposed approaches remains an almost impossible
task. The other important conclusions that can be drawn from the literature review
carried out in this chapter can be summarised as follows:

• Future optimal placement of pressure sensors studies should focus on simulta-
neously considering the possibility of detecting and, most importantly, localising
leaks/bursts.

• Hydraulic models are instrumental to the future development of cost-effective
sensor placement techniques for leak/burst detection and localisation purposes.
Adoption of more realistic hydraulic modelling practices such as considering
pressure-driven modelling, for example, is envisaged.

• Sensor placement methods that make full use of the hydraulic simulation results,
as opposed to methods that involve binarisation of the residuals/sensitivity
matrix, should be preferred. Further development of these methods to more
effectively deal with the various sources of uncertainties is envisaged, especially
for model-reality divergences that have not been considered by researchers so far.
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• Research into the use of other (as opposed to the techniques used so far),
potentially more efficient, optimisation techniques to solve the sensor placement
for leak/burst detection and localisation problem should be carried out. This
research should favourably look into algorithms that are able to automatically
adjust their hyper-parameters and into the possibility of using parallel and high
performance computing.

• Further investigations into the potential of using clustering algorithms coupled
with optimisation techniques (as opposed to clustering algorithms used on their
own) to reduce the size of the solution space/complexity of the sensor placement
problem should be carried out.

• Tightly coupled optimal sensor placement and leak/burst localisation frameworks
should be developed by researchers in the future as an optimal placement depends
on the method that is used to localise the potential leaks/bursts and the efficiency
of the leak/burst localisation depends on the sensor placement.

• Much greater attention should be paid by researchers in the future to the issue of
sensor/communication failures as this is of critical importance for the effective-
ness of optimal sensor placements for leak/burst detection and localisation.
Research into the use of artificial intelligence-type and (geo)statistical techniques
with the potential to mitigate this issue and issues related to the use of imperfect
hydraulic models should also be carried out.

• Methods for the optimal placement of pressure and flow sensors simultaneously
should also be the focus of further research and development in the future as using
additional flow instrumentation can improve the leak/burst detection and
localisation performance. In this context, the developed methods should carefully
account for cost-benefit considerations as, because of the higher costs associated
with obtaining flow measurements, including such considerations becomes even
more important than it currently is.

• Future optimal sensor placement methods should also account for risk in order to
be of even more value to water companies. Further research into refining the
means of estimating the likelihood and impact components of risk should be
carried out.

• Future optimal sensor placement studies should strive to incorporate results from
field demonstrations as this is the only way to ultimately assess the actual
capabilities of a proposed approach. Where this is not possible, future studies
should at least include an assessment of their underlying capabilities using a set of
common quantitative metrics, benchmark models and leak/burst scenarios.

Although optimal sampling design for leak/burst detection and localisation has
been the focus of this review, researchers and practitioners interested in this topic
should also look at macro-location of sensors in the wider context of WDSs
management (i.e. look at optimal sampling design techniques developed for the
numerous other optimisation agendas such as detection of contamination events).
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Indeed, elements of research conducted for other sampling design purposes are
conceptually applicable to frameworks aimed specifically at optimal sampling
design for leak/burst detection and localisation. Most notably, the optimisation
approaches and algorithms developed for (or merely implemented in) the wider
sampling design literature are distinct from the objectives to which they are applied.

In addition to all of the above, it is also worth highlighting the fact that with the
rise of easy-to-use and low-cost sensing devices, Internet of Things (IoT) technol-
ogies and edge analytics an increase in the density of heterogeneous sensors
deployed in WDSs may be expected in the near future. In this scenario, pressure
and flow devices will be part of a much wider network of sensors. Therefore,
considerations regarding issues that have been the focus of research in the broader
wireless sensor networks’ literature, such as reliable communications, efficient
routing protocols, power management and computation/communication overhead,
to mention just a few, will need to be accounted for when developing optimal sensor
placement techniques for leak/burst detection and localisation in WDSs [99].

Finally, it must be noted that in this review the requirements for additional
instrumentation have been looked at in the context of WDSs subdivided in DMAs.
The rationale for this is that many of the optimal sampling design techniques for
leak/burst detection and localisation found in the literature have been developed and
tested under the “DMAs existence” assumption. This, in turn, is probably due to the
fact that DMAs are seen as ground zero data-wise on the water companies’ journey
towards operating smart water networks [100]. As evidenced by the fact that, over
the past two decades, a number of technology vendors have aligned their business
models based on the data flows captured or technologies required by a DMA
approach, many water consultancies have implemented their DMA-dependent
water balance methodologies around the world, and major industrial players have
tailored products for managing sectorised networks [100]. Having said all this,
however, the “DMA model” (led by UK water companies) only proliferates in
Europe while gradually been adopted in countries such as Singapore, Chile, Brazil
and Australia. The “non-DMA model”, on the other hand, represents the bulk of the
world’s WDSs, and it proliferates in the USA as well as Germany and most of the
developing world [100]. From the “non-DMA model” perspective, it may not be
cost-effective or even practical to subdivide a WDS into DMAs. Therefore, the
development of further optimal sampling design techniques for leak/burst detection
and localisation should bear the global situation in mind and be pursued indepen-
dently by the existence (or otherwise) of DMAs, which does not seem to be a strict
requirement for this task. Furthermore, it is worth mentioning that this task may
perhaps also be facilitated by the fact that, in recent years, the Virtual DMAs
(V-DMAs) concept has started to come to fruition as data from a suite of technol-
ogies such as insertion, ultrasonic and acoustic flow metering and smart customer
meters has started to be leveraged on a larger scale.
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Abstract During the last decades, the role of data as a vital resource that enhances
decision-making and supports efficient systems operation has become evident, with
a growing number of companies viewing data as a key organizational aspects that
has to be properly managed, instead of an operational side-product. At the same
time, drinking water systems increase in complexity and feature smart sensors,
which in turn leads to data-richer operation environments for the water services.
Given this challenging context, the often-overlooked factor of ensuring high data
quality and preventing errors in data streams becomes increasingly important. In this
chapter the current data validation techniques, challenges and best practices of the
Dutch drinking water companies is presented.

Keywords Anomaly detection, Best practices, Data quality control,
Hydroinformatics, Netherlands

1 Introduction

1.1 Background

Despite the emerging need for holistic, efficient data management policies,
implementing a proper Data Quality Control (DQC) strategy is generally a
non-trivial task, as the protocols and techniques used are process- and context-
dependent. For the water sector, protocols to standardize data acquisition and
analysis are being developed for different parts of the water cycle, targeting the
data streams of specific processes. For example, management frameworks in the
context of urban hydrology and sewer systems have been developed [1, 2], as well as
initiatives for European ocean and sea data management [3].

In the Netherlands, since 2012 a protocol for data quality is being developed by
KWR Water Research Institute and the Netherlands Organisation for Applied
Scientific Research (TNO) for registration of groundwater levels and hydraulic
heads [4–6]. A consequence of such protocol is the development of a validation
tool named Menyantes1 [7] for which a new version of this software, named
HydroMonitor, is currently under development. In the drinking water sector, a
uniform failure registration database (USTORE) has been used by eight Dutch
drinking water companies [8]. This initiative started in 2001, and it has been an
ongoing process of continuous improvement, with both the complexity of the
registration and data requirements increasing over the years. In 2017, a protocol to
guarantee data quality was included in the PCD (Praktijkcode Drinkwater1) no. 9:
‘Uniform failure registration’. In 2018, this PCD was released [8].

Within these protocols, one of the core ways of improving data quality is by
performing data validation. Data validation or, in other words, fault detection and
isolation (FDI) refers to the identification and handling of anomalies and outliers in

1https://www.praktijkcodesdrinkwater.nl/
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data that cannot be explained by the underlying physical rules of the measured
system.2 These anomalies, otherwise known as errors, can be further distinguished in
three types [10]:

1. Measurement errors (e.g. failure of data registration, maintenance problems,
drifts, bias, strong gradients, lack of redundancy, problems of coherence at both
local and global scale, duplication of data)

2. Human errors (e.g. sensor placement, sensor settings, faulty/inadequate calibra-
tion, unit conversions, round-off and data conversion errors)

3. Any occurrence of unexpected processes, modifications and events in the mon-
itored urban water systems, either controlled or uncontrolled (i.e. pipe bursts,
flooded pump station, maintenance of a filter at a treatment plant)

Untreated or mismanaged data strongly impacts the service operation, as it
propagates deeper [11] into the decision-making process and leads to erroneous or
ill-informed decisions regarding system operation, organizational mistrust, reduced
service efficiency and, eventually, customer dissatisfaction [12]. The detection and
identification of the aforementioned errors can be carried out with a variety of
methods that include threshold, data-driven and model-based approaches, as further
discussed in Sect. 3.

1.2 Scope and Approach

This chapter aims at providing a bird’s-eye view of data validation in the drinking
water industry of the Netherlands towards better Data Quality Control (DQC)
policies in the drinking water sector, by providing insights on (raw) data validation
in two problem types, one of water quantity and one of water quality. The focus of
this chapter is on a specific aspect of the overall DQC chain, which deals with faulty
data detection and isolation (FDI). Furthermore, of interest are errors in the mea-
surements, because sensing and human data editing process lead to raw data
distortion in the form of, e.g. drift, bias, precision degradation or sensor failure
[13]. Mapping this focal point to the typology of errors seen in Sect. 1.1, it becomes
evident that this chapter focuses only on errors of type (i) and type (ii),
i.e. measurement and human errors. Moreover, the focus lies on data validation to
determine faulty data and the identification techniques, without expanding further on
the decision-making process regarding to accepting or rejecting the faulty data.

As a first step, in order to identify the needs of the industry and its current
practice, an inventory of current applications regarding DQC within the water
companies was conducted. Visits or interviews with four water companies took

2Given this definition, any outliers or anomalies in data owing to natural rare and/or extreme events,
including very low probability cases such as black swans [9], should not be considered as faulty
data due to errors that have to be corrected.
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place during the period January–May 2018, as well as surveys using questionnaires
that were sent to representatives of drinking water companies that are part of the
Dutch joint research (BTO Bedrijfstakonderzoek in Dutch) [14].

Secondly, to gain insight on different approaches on data validation, a literature
review on faulty data detection techniques was performed, resulting in an overview
of available techniques that are relevant for the drinking water companies. This
overview differentiates between simple and complex techniques, and it also includes
the range of applications of each one. Based on the insight gained by the literature
review and the data gathered from the water companies, a data quality control is
proposed using simple techniques.

Based on the findings of the previous steps, an application in three cases focusing
on two types of problems in drinking water follows. The two problem types:

i. The detection of anomalies in volume flow rate, as an example of data validation
in water quantity

ii. Anomaly detection in datasets of temperature, turbidity and pH, as an example of
validation in water quality

The analysis of the case studies was performed in close cooperation with the
water companies. In this chapter, only data validation for one company, Company A,
is presented.

Finally, using the information collected from all previous steps, best practices and
issues regarding DQC by the water utilities are identified, as well as recommenda-
tions for future application of faulty detection techniques, along with ideas for future
research in the field of DQC in the Dutch drinking water sector.

1.3 Outline

A brief overview of the contents of the following sections is provided in this
paragraph. In §2, the necessary foundations and theoretical background in DQC is
defined, and an overview of current experiences of the drinking water companies is
provided. Having set the foundations, §3 contains the literature review on faulty data
detection techniques. This overview leads to a selection of techniques directly
applicable to Dutch water utilities, in Sect. 4, the form of a flowchart, to implement
simple techniques for DQC is presented.

In §4 are described the data obtained from the drinking water companies for
different studied cases and their results, derived from the application of simple
techniques following the proposed data validation. At the end of §4, the best
practices and issues found during the implementation of the cases is summarized.
Following the analysis, §5 contains the discussion and recommendations that high-
light the need for future research. Finally, §6 describes the main conclusions drawn
from each case study, as well as general conclusions drawn from the application of
the methodology.
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2 Data Quality Control: Theory and Current Practice

2.1 Principles of Data Quality Control

Data is now considered one of the fundamental pieces of the daily operation across
many services [15]. Over the recent decades, rapid technological changes have
transformed multiple service fields into data-rich environments, where decision-
makers are increasingly called to evaluate and decide based on data. Smarter and
more frequent metering [16, 17], along with advances in hardware, editing technol-
ogies and new data analysis techniques have reshaped decision-making from an
empirical to an increasingly data-driven process [18]. Furthermore, the role of data is
foreseen to grow, with the inclusion of technologies such as cloud-based systems
and big data analytics in the systems analysis and, eventually, the decision-making
culture, thus causing a paradigm shift in the value of information, the nature of
expertise and, eventually, the practice of management and decision-making itself
[19, 20]. This paradigm shift is also occurring in the drinking water industry, as
drinking water networks become smarter, more networked and more complex
[16, 17], thus providing increasingly data-rich inputs to the operators and the
decision-makers.

The elevated role of data in decision-making leads to a pressing need for more
efficient data quality services, as poor data quality leads to ill-informed operational
decisions and, thus, less reliable systems and higher customer dissatisfaction
[12]. Moreover, data can be considered the foundation of knowledge creation that
leads to knowledge (Fig. 1), as time scales shift from the operational collection of

Fig. 1 Overview of the components feeding the decision-making process
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(raw) bytes to information analyses at tactical level and, finally, strategic interpreta-
tion of the analytical results that provides knowledge and wisdom to management
groups. It follows, as a result, that the water companies have acknowledged that
good data provides a basis for good decision-making.3 As such, the policies to
control data quality serve a fundamental function to the transformation from data to
wisdom [21] for water utilities, along with the broader frameworks that extend data
applications for decision-making provided by the concept of hydroinformatics [14].

As in other product, process and service cycles in organizations, ensuring data of
good quality requires an encompassing framework of continuous quality improve-
ment, which can be defined as a framework for Data Quality Control (DQC). To
design such a framework, classic quality improvement methodologies can be
employed, such as the Plan-Do-Check-Act (PDCA) approach (Fig. 2) [22, 24, 25],
which can be used to describe the continuous improvement of measurement systems

Fig. 2 The PDCA approach for data quality improvement, data to information at water utilities.
Adapted from [22, 23]

3Minutes, Hydroinformatics platform 12 October 2017
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and their data products as a cyclic process. The PDCA approach can be viewed as a
proactive framework which continuously monitors and registers data, checks their
integrity, acts upon the checked datasets to feed information-based decision-making
and plans strategies, including proposition of improvements on the sensing/moni-
toring system which in turn closes the loop [26, 27].

2.2 The Role of Validation in Data Quality Control

Within the DQC context, validation techniques play a key role in connecting the
wealth of information obtained by raw data acquisition with decision-making and
planning. The acquired data (i.e. the result of a “Do” step in a PDCA cycle, see
Fig. 2) needs to be checked against errors and, in case faults are detected, needs to be
corrected before feeding any decision-making process (i.e. the steps of “Act” and
“Plan”). To complete this transition, a “Check” step is needed, which is better known
in information analysis as Data Validation [23].

As seen in Fig. 3, data validation can be further distinguished in three steps:
Collection, Detection and Correction. Data collection refers to the process of gath-
ering data through data streams from each sensing device to a database, otherwise
known as a data warehouse. The step that follows is the detection of a subset of data
which could be deemed faulty. Detection techniques have to ensure that they can
safely distinguish between actual faulty data and data which appears doubtful but its
deviation could be attributed to something else than an error (Fig. 4). As a last step,
the data confirmed to be faulty need to be corrected (e.g. empty values filled, outliers
corrected based on other close values, etc.) before the data can be interpreted further
and used as a basis for decision-making. This stepwise process of identifying and

Fig. 3 The three steps
comprising identification of
faulty data
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correcting faulty data is also known in literature as fault detection and isolation
(FDI) [28].

Primarily, the goal of data validation lies in identifying and extracting the subset
of data which may be considered faulty (Fig. 4), i.e. not representing a valid
measurement of reality, due to a measurement or human error [10]. From the likely
faulty subset of data, some data represent occurrences of irregular/unexpected
processes in the system (i.e. pipe bursts, catastrophes, maintenance downtime
etc.). These data constitute a third type of human error that lies beyond the scope
of this study, as explained in Sect. 1.2. The focal point of this study lies, therefore, in
techniques that can be used to detect the subset of faulty data whose faultiness can be
explained and attributed to measurement or human errors, i.e. the first two types of
errors seen in Sect. 1.1. At the same time, the detection process has to ensure that
irregular but non-faulty data are not classified as faulty. For instance, outliers owing
to extreme events and even unprecedented events such as black swans [9] belong to
the valid data subgroup and should not be classified as faulty data.

As a core process in DQC, data validation is not a new concept and has been
developed heavily in DQC platforms [29], relying largely on algorithms and math-
ematical techniques of faulty data detection. However, automating the entire process
of data validation is not realistic [30], and expert judgment is still required to cross-
validate the results produced by mathematical methods.

2.3 Data Quality Control in the Context of Drinking Water

The concepts on DQC and validation described in §2.1 can be applied to any data
stream production environment [31], including course drinking water (DW). In that
case, data describing the status of the DW network (i.e. samples of physical variables
such as water quantity, quality, water level, pressure head, etc.) are acquired by

Fig. 4 The data set which is target of validation
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sensing devices from multiple points within the production, transport and distribu-
tion chain and typically stored in a central repository.

To demonstrate this, Fig. 2 presents the data-to-information workflow typically
seen in the context of drinking water. Elements from the PDCA approach, as
analysed in §2.1, have been mapped, focusing on the Do-Check-Act-Plan parts of
the loop that describes the pathway from data to information (and, eventually at the
plan stage, knowledge). One may observe three distinct levels: acquisition of data
(level 1), followed by transformation and quality control (level 2) and finally
dissemination of the information produced by data (level 3). In the data acquisition
level, data is coming from sensors (possibly in real time) or can be fed from
periodical manual checks, such as local visits, regular sampling, etc. Such data can
be considered raw data, which means that they are stored as obtained by the sensors.

After acquisition, a common workflow inside a data warehouse is to upscale fine-
scaled data through aggregation or averaging, in order to produce metrics and time
series at intervals meaningful to management or to identify extreme or periodic
events [32] and causal factors [1]. Prior to this step, raw data need to be cleaned of
errors belonging to the two types explained in Sect. 2.1. In the context of water
utilities, these errors could be due to sensor failure (maintenance problems, bias,
de-calibration, communication failure, physical damage due to catastrophes, etc.),
due to human mistakes (incorrect installation of measuring equipment, e.g. sensor
settings, unit conversions, not using the validation protocol issued by the manufac-
turer or forgetting registering information) and due to unexpected processes, phe-
nomena and events in the monitored urban water system (electrical power outage,
failure of a pump).

Due to the numerous processes involved, data validation is not trivial but depends
on:

• The type of variable monitored
• The overall measurement and sensor/monitoring network conditions and more

specifically:

– The degree of system complexity

Larger systems may require larger sensor networks in this way more vari-
ables are measured simultaneously.

Sensors located far away from each other may be correlated or measure
completely different patterns with delays.

– The operational age of the sensor/monitoring network, which is translated in
the time length of available data

– The type and technology sensors/equipment used

Precision, accuracy, type of measurement, uncertainty of measurement

• The characteristics of the phenomenon being captured and more specifically:

– The type of problem (leakage detection, water balance closure, water quality,
etc.)
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– The way data is represented (i.e. real numbers as pressures and flows, binary as
pump switches, categorical as status of data provided by most systems),

– Data resolution (i.e. both temporal or spatial)
– The method/technique used for validation (see Sect. 3 “Literature Review

on Faulty Data Detection Techniques for Water Utilities”)

A single technique cannot be used for all instances.
The time spent between techniques can vary between pre- and post-

processing.

– The metrics used (i.e. some variables such as pH, temperature and turbidity are
based on a sensor calibration made through laboratory tests)

• The user and objective

– Data may be used for real-time control (RTC) or offline historical analysis.
– Some methods may be used by data warehouse administrators, while for water

accounts managers as end users only performance indicators or data aggrega-
tion as post-process are relevant.

2.4 Current Implementation of Data Validation Techniques
by the Drinking Water Companies

Drinking water companies own and manage extensive systems (with several facil-
ities), which are continually monitored at different points, e.g. production, transport
and distribution. For example, Company A has approximately 73,000 variables in
total, measured every second. Currently every company is dealing with data quality
issues. Due to the exponential growth of data and the specific characteristics of each
variable, these cannot be easily manually validated.

Additionally, time series (TS) are becoming increasingly necessary for model-
ling, such us hydraulic, risks and decision models.

Other emerging drivers are stricter laws and regulations for the definition of
standardization of data models and protocols. For example, the European INSPIRE
directive4 defines the technical guidelines for data specification of Infrastructure and
its spatial information. Such initiative is currently an invitation for standardization
moving forward (which may facilitate exchange of information), rather than a
mandatory application for future implementations for the drinking water utilities.

Despite these drivers, there are still several barriers to validate the data. The
volume of real-time information has become so extensive that validation of all the
variables by a human becomes unrealistic. To deal with it, in some cases data

4Commission Regulation (EU) No 1312/2014 of 10 December 2014 amending Regulation (EU) No
1089/2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as
regards interoperability of spatial data services
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validation is limited to aggregated data (e.g. daily water use in a supply area). In
other cases, software tools are built to screen and flag the data which is identified as
suspicious.

Currently, it is not possible to validate all the variables. In general, the most
important data is validated, by a mix of manual and automatized routines. One of the
companies introduced the concept of a data diet, which implies a profound consid-
eration of which data have to be measured, in which kind of time interval they have
to be stored and which of them have to be validated, before starting to generate data.
For some datasets, it is not really needed to develop a high level of validation. For
those datasets where validation is essential, we should look into the possibility of
correlation between different variables, measure all these variables and use correla-
tion techniques (data science, statistics, models) for the validation.

The techniques used by the water companies to validate the data include:

• Manual validation (expert judgment)
• Visual comparison
• Control of measuring range, plausibility, data types
• Cross-correlation, statistical methods and models
• Combining own data with validated external sources

Examples of current practices on data validation are:

1. Filling missing data in the records of produced water using registered energy use
and relation between energy use and produced m3 of water.

2. Determining missing year of installation of the pipes using the age of the
buildings of the area. Although these methods are not exact, they help to improve
the quality of the datasets. To the question regarding which platforms drinking
water companies use to store and process the data, each company has its own
(customized) systems. Some examples are shown in Table 1.

Table 1 Overview of tools per utility

Utility Systems

A FEWS, Aspen and Midas

B A MS SQL server database

C PI (real-time information assets), SAP (context information of the assets) sample man-
ager (information regarding water quality) and SCADA (events and all process
information)

D PGIM (database van ABB 800x a process automatization) and own data warehouse
(Microsoft SQL)

E PA (PIMS) and SAP

F GIS (ESRI) own information system (accent) and SAP SharePoint

G Data warehouse and Infor PGIM

H Oracle Data warehouse, SQL, Excel, MS Power and BI ARCGIS

A Bird’s-Eye View of Data Validation in the Drinking Water Industry of the. . . 75



2.5 Data Validation: Experiences of a Front Runner –

Company D

One of the drinking water company, which is identified as one of the front runners in
relation to automatization of routines for data validation, collects a lot of measure-
ment data in PI (from OsiSoft), but still it only validates just a small percentage of all
the data.

Company D has a system to validate water volume flows, and it validates the
daily volume flow at measurement points on the boundaries of the DMAs (about
150 locations per day). The validation consists of checking if the difference between
meter readings at the beginning and end of the day is equal to the sum of the
analogue readings during the day. If that does not turn out to be correct, the user
of the system is assisted in correcting the daily quantity for instance by showing
typical values/ranges for this type of day and the historical values of the last 7 or
14 days. Validating always consists of two steps: (1) check whether the data to be
validated is plausible; if not, (2) correct the data. Individual large customers
(>10 � 103k m3/y, approx. 600 units) are validated on a monthly basis. Meter
readings of each month are compared with the previous month. It is also checked
whether the difference between both meter readings is equal to the sum of hourly
values (which are collected to determine peak rates).

Within the data validation process, the responsibilities are well defined: An
employee (from the control centre) validates the measurement points in the net
and checks that the validation actions are carried out by production sites (if they
appear to be necessary). An employee from the industrial water department validates
large customers (>100,000 m3/y) and all the industrial water customers. An
employee of the customer contact centre validates customers with drinking water
consumption between 10,000 and 100,000 m3/y. The operators on site validate the
outgoing flows of production sites, plus the waste water flows and the incoming
water flows. The validation rules are also reported. Despite some companies having
automation for data validation, this task still represents a lot of work and needs
constant attention. It has become increasingly clear that not only the quality of the
sensor and the data logger but also a good interface to PI are very important aspects
within the process to validate the data.

3 Literature Review on Faulty Data Detection Techniques
for Water Utilities

3.1 Background

The detection of anomalies corresponds to the first line of defence against faulty
data, as it allows near real-time identification of individual values or sets of values
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that are erroneously measured or that deviate from what is regularly measured in the
system (e.g. a water distribution network or a treatment plant).

Detection is performed by developing a validation technique for the object that
generates data (e.g. a sensor) at the time it generates the data, with various techniques
having been developed for this purpose in literature [3, 33, 34]. In typical operational
cases, data validation is carried out manually by expert judgment using both analytic
and visualization tools. The issue with that approach is that with current data streams
only a small amount of data can be validated by operatives from the utilities [2], and
as evidenced by several authors, there is always a human bias in the decision making.
This human bias is particularly important while determining whether data corre-
sponds to anomalous/irregular behaviour (which can be explained, e.g. due to
extremes or failure of network parts, such as leakages and pipe bursts) or faulty
data (unexplained, e.g. due to sensor faults) [35], as explained in Fig. 4. In this text,
faulty data corresponds to data belonging to the two error categories explained in
Sect. 2.1., i.e. measurement and human errors only.

An inventory of faulty data validation techniques is presented in §3.2, based on a
literature review on the subject. In general, there are sequential steps for data
validation corresponding to:

(a) Input variable selection, which consists of the selection of a subset of interest
from the data warehouse that have to be validated [36].

(b) Pre-processing, which includes a number of statistical and modelling techniques
that help to identify anomalies, either by statistical analyses or by contrasting
real data to modelled data equivalents.

(c) Anomaly and faulty data detection, which can be performed with either simple
or advanced (statistical) methods.

The diagram of Fig. 5 also provides an indication of the amount of data required
(Data arrow) and the amount of time (Time arrow) for each technique. Evidently,
more advanced techniques require more data and time. In pre-processing techniques,
the use of models or meta-models may drastically increase the data and computa-
tional requirements, but it may lead to a significant reduction of the uncertainty in
faulty data identification.

3.2 Faulty Data Detection Techniques

Faulty data detection techniques are generally classifiers which divide the data in two
classes (correct and faulty/doubtful). While some detection techniques have been
applied for generic problems [29, 37, 38], water research has also developed domain-
specific techniques for sewer systems [36], geo-hydrological systems [4, 6, 7, 33,
39], water quality sensing [40], automatic or real-time data validation in urban
systems [2] and specific problems such as the determination of leakages as anom-
alous data in water supply systems [41]. As depicted in Fig. 5, these techniques are
divided based on their complexity to two main categories: simple tests and statistical
tests.
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3.2.1 Simple Tests

These techniques offer an array of simple methods that can be used to determine if
data follows regular patterns or is contained within certain thresholds. Examples of
these techniques include (Fig. 6):

(a) Special value detection (zero, flagged values), where faulty data is identified
based on a pre-set special value, which acts as a flag. This typically happens
when a sensor fails to register a valid value (e.g. due to power failure or
maintenance downtime) and logs data such as ‘Null’, ‘-9999’ or, in some
cases, 0, which can be then easily tracked.

(b) Flat line detection, where groups of consecutive constant (zero or non-zero) data
are identified and flagged as suspicious. Flat line detection can be used for
multiple purposes, as a tool for the detection of gaps in the data or for determin-
ing constant values which tend to be very rare inside a water distribution network
(WDN), especially if the time series are characterized by periodic patterns. The
definition of the time window and duration for a flat value test is problem-
specific, requiring fine-tuning for each variable and each sensor [40].

(c) Boundary detection (minimum and maximum threshold detection), where data
that exceeds certain (pre-set) minimum and/or maximum thresholds is flagged as
suspicious. In water systems, this analysis is often based on geometric, hydraulic

Fig. 5 Inventory of faulty data detection techniques. Solid lines represent the focal subject of this
study
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and data quality constraints. For instance, tanks have a limited capacity, and
valid water level values have to be below that; likewise, pressure values in a
network are bounded by physical (and pipe strength) constraints. These tests can
be set by setting appropriate thresholds on data before storage to the database or
data warehouses, based on expert judgment, e.g. from both system operators and
data managers. Thresholds can be also based on historical operational values, for
instance, when deriving the operational temperature range of a wastewater
treatment tank.

(d) Jump or leap detection (change of variance), where faulty data are identified
based on leaps or jumps in signal data. As part of these techniques, any subsets
that deviate from a general trend or (seasonal or diurnal) pattern are flagged as

Fig. 6 Examples of simple testing for data validation, with measured samples in red, boundaries as
red lines, and marks of faulty data in cyan blue. Faulty data 1, no flag 0. Panel (a) flat line detection,
panel (b) min-max boundary testing, panel (c) jump-leap detection
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suspicious. These techniques are effective at identifying systematic errors,
e.g. due to sensor calibration faults.

Evidently, different tests are suitable for specific water system assets, e.g. there is
no point having a flat line test for a pump that gets periodically switched on or off.
Besides these simple test types, other variations are also possible depending on the
context, such as the use of slope/gradient tests or sensor-specific drift techniques;
these methods fall beyond the scope of this study.

3.2.2 Statistical Tests

Beyond simple testing for faulty data detection, statistical analyses offer a formal
framework to probabilistically detect faults, e.g. as outliers of given distributions.
The statistical tests that exist in literature are given in the following sub-sections.

Comparison of Flow Pattern Distributions (CFPD)

Time series such as inflows and consumption patterns of a WDN generally follow
patterns on a diurnal, weekly and seasonal scale. Variations in consumptions due to
season change are common (i.e. winter, summer) [42], as well as due to specific
events in a short time window [43]. In these cases, a comparison of flow pattern
distributions (CFPD) can be performed for the detection of anomalies, for instance,
based on the identification and interpretation of features in CFPD block diagrams.
Feature analysis and techniques for the automated screening of data with seasonal
statistics can be used to measure deviations for the expected value and infer the
existence of faulty data [44].

Spatial Deviation

In some cases, variables exhibit correlation in space. In these cases, a complete set of
techniques for faulty data identification can be explored with the use of
geo-statistical techniques, such as Kriging, in order to estimate deviation between
the measured value and the estimated [45]. These techniques have been mostly
applied in hydrology and fall outside of the scope of this chapter.

Extreme Value Checks

Another type of statistical approach is to perform extreme value analyses (EVA),
where the probability distributions of sensor variables are inferred from observed
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values. Once a distribution is fitted, the quartiles of the data can be obtained and a
hypothesis test can be performed to identify values which fall outside the statistical
boundaries. If the test has statistical significance, the value can be registered as an
outlier, implying that is considered as faulty data. This approach can supplement the
CFPD method described above.

Regression Analysis, Correlation Checks and Principal Component Analysis
(PCA)

Statistical regression encompasses a large number of techniques that aim at fitting a
line or curve to a data and using it as a basis to determine outliers and – potentially –

faulty data points, as well as to predict/infer missing data, based on a subset of ‘good’
data points [46–49]. Such a regression model in principle includes two (2) compo-
nents: (a) predictors or explanatory variables, which form the basis of the prediction
and (b) response variables, which can be predicted based on the explanatory vari-
ables.5 Multivariate regression models can be also employed in case there are
multiple explanatory variables for the water production. Techniques when data are
sampled in unevenly distributed intervals also exist [50] and can be of use to water
utilities, where some variables are stored irregularly at specific events and subse-
quently interpolated prior to storage in databases/data warehouses. On the assess-
ment side, multiple metrics6 to assess the successful adjustment of the regression line
or curve exist [51], quantifying whether the model represents the response variable
as a function of the explanatory variables accurately. Once the regression model is
fitted, any large error between an actual data point and the estimation can be flagged
as a faulty data point.

The main issue of relevance to regression models for data validation is to properly
select the explanatory variables for a certain response variable. This issue is related
with the concept of data diet (Fig. 5), in the sense of looking for a correlation
between different variables by (1) deciding which correlations are possible by using
physical and domain knowledge (expertise of drinking water) and (2) employing
statistical correlation techniques used by data scientists.7 The techniques used for the
selection of explanatory variables are known as input variable selection (IVS) and

5For example, one may be interested in the relation between the monthly water production [m3] of a
utility and the total energy consumption [kWh] used for treatment, transmission and distribution. If
there is a missing or suspect faulty data in water production, then this value can be estimated based
on the total energy consumption of the utility (explanatory variable).
6Examples include the Root Mean Square Error (RMSE), Coefficient of Determination (R2), Nash-
Sutcliffe Efficiency (NSE), Kling Gupta Efficiency (KGE). For a successful regression model,
RMSE should have low values (close to 0.0), while for efficiency metrics a value near 1.0 is
optimal.
7Domain knowledge is always relevant in the water sector, as a SCADA, water data warehouse or
database can exceed a thousand variables (nv

~1000Þ and thus a combination of response variables

that exceeds ndd ¼ nv nv�1ð Þ
2

~500:000 values.
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have broader applications in engineering and environmental sciences [48, 52,
53]. Such techniques apply correlation and stepwise selection of explanatory vari-
ables to perform the identification of significant dependencies and are based on two
main techniques:

(a) Correlation analysis, which explores auto- and cross-correlation structures
based on time series analysis [54]. A multitude of techniques exists in both
stochastic and deterministic time series analysis [55] and analytical models exist
that include long- scale dependency [56, 57], persistence [58–60] and more
sophisticated models such as ARIMA/ARIMAX [61–63]. In water quality
analysis, correlation has been extensively applied for open and pressurized
flow when data validation is required [64, 65].

(b) Principal component analysis (PCA), as its name states, has been applied mainly
for determining variables which may project the data into its principal compo-
nents. The data is transformed using an orthogonal transformation and then
converted into a set of variables uncorrelated among themselves, which in turn
denominates the principal components. Particular applications for PCA in the
water sector are to support the identification of consumption patterns and leakage
detection [66].

3.2.3 Data-Driven Models

Another approach that features methods heavily relying on the dataset itself is called
data-driven modelling (DDM) [67, 68]. These methods originate from the computer
science fields of computational- or artificial-intelligence (CoAI) and machine learn-
ing (ML) and are used for data exploration, data mining [69] and also classification.
The latter case aims at building classifier models8 based on a large number of
independent (predictor) variables and is of use to data validation. Data-driven
techniques, among others, include:

• Decision trees (DecT), which can be considered the simplest technique to perform
classification of large datasets [70], seeing use in the prediction of leakages and
breaks for WDN models [71]

• Support vector machines (SVM), which are non-linear regression algorithms over
multi-dimensional input spaces that have been used for leakages and demand
pattern identification [72–74]

• Artificial neural networks (ANN), which are machine learning algorithms
inspired by biological neural networks and used for classification. In the water
sector, ANN have been applied for the identification of losses and leakages in

8Classifier models (or classifiers) output a categorical variable (e.g. with values ‘1’ or ‘0’, that can
be flags for a data validation problem), based on a (large) number of input variables, that can be for
instance geophysical or water system time series.
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distribution networks and supply systems [41, 75] but also as surrogate models of
complex networks [76, 77], to simplify simulation and save computational time

The drawbacks of these data-driven approaches is that they require a large amount
of data for training (and, ideally, validation) and that they are considered, in an
operational sense, ‘black-box’ estimators, with the human actors having limited
insight of their internal structure and functionality.

3.2.4 Physical Models

Physical modelling is able to provide a reference set of (modelled) system measure-
ments that can be used as a basis to perform faulty data identification. For instance, if
a WDN model (e.g. in EPANET, Infoworks or WaterGEMS) of the system is
available and properly calibrated, it is possible to simulate the behaviour of the
network and then extract the data on pressures, given the proper drivers (e.g., current
levels in tanks and reservoirs, demand forecast) are known. It is then possible to use
that simulation output as a comparison basis with sensor data; any deviation from
what is modelled might then be flagged as (potentially) faulty data. Deviations of the
reality from the model could indicate for instance an increase of losses due to pipe
breaks or background leakages [78] or in some cases faulty sensor behaviour
(e.g. due to service downtime).

The trade-off for utilities with setting up a physical model lies between model
reliability and computational cost. The more reliable the model is, the larger the
effort to keep models up-to-date and properly calibrated, which is a (continuous) cost
for the utility. The reduction of complexity and computational time can be curbed
with techniques such as network skeletonization [79, 80], hydraulic simplification
[81] and topological aggregation of serial pipes [82]. Another approach to reduce
computational time lies in the use of surrogate modelling techniques [83]. Even at a
higher computational cost, Model Predictive and Data Assimilation approaches are
beginning to be developed for uncertainty reduction [43, 84, 85] and as a conse-
quence may be used to identify data anomalies.

3.2.5 Knowledge-Based Techniques

Regardless of the mathematical, statistical or modelling techniques that assist faulty
data detection, knowledge and expert-based judgment offers invaluable insight to
validation and allows the operators to reach decisions on whether flagged data is
actually faulty or not. A strategy for knowledge-based evaluation might include:

• Periodically checking the status of sensor or asset, where log files and metadata
are checked to evaluate whether a particular sensor or asset is operating well and
is well-calibrated. These checks also include periodic maintenance, such as (re-)
calibration in sensors, as these are expected to have a reduction in their reliability
and accuracy over time [86].
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• Checking the duration between sensor maintenance and anticipating operational
downtime periods.

• Maintaining and consulting a repository with data from past network failure
events, such as a Pipe Failure Data (PFD) repository, which is of use to update
physically based models and clarify certain anomalies which otherwise would be
identified as faulty data [87]. Standardization and integration of PFD repositories
among water companies helps streamline this task [88, 89].

• Combining expert-based judgment with ad hoc validation tools built for a specific
part and function of the water system [7].

4 Application of Data Validation

4.1 Overview of the Data and Selection of the Techniques

In order to apply and test diverse data validation techniques, two problems in the
field of drinking water distribution were identified:

• Anomaly detection in volume flow rates and energy use
• Anomaly detection in datasets of temperature, turbidity and pH.

In Table 2, the overview of the cases and the data validation techniques used
during the 2018 survey are presented where only the proposed data validation
applied to Company A’s data is discussed in this chapter.

The data provided by the water utilities contain several differences. In terms of
variables, water quality data tends to be more homogeneous. Data resolution was
also variable and depends on the type of registration for each utility. It can vary in
minutes, quarters (15 min), events (when significant change occurs) and pulses.

Timestamp registration is also very heterogeneous across utilities, dates can
contain summer and winter time as number or other indicator (+1.00 or +0.00),
and some information is consistently absent on the same timestamps, most likely due
to data communication. In this regard, at 00:00, Company A contains no data,
indicating that the data transfer is most likely to occur at this time at night. Data
from one utility was provided as a Last In, First Out (LIFO) format (reverse dates)
for some variables, while the same utility provided a more common First In, First
Out (FIFO) format.

Length of time series was also very variable as it was not possible to obtain more
than a few months of data for Company B. Some sensors have recently started to
send live data. Due to the high variability in data types and content, it was not
possible to perform a one size fits all analysis of data validation and more specifically
of faulty data detection, so the focus given to specific datasets is variable to present a
broader set of analyses within the funding research instrument BTO.9 In each

9BTO: Bedrijftaak Onderzoek. It corresponds to research within the consortium of the ten drinking
water companies from the Netherlands and one Belgian drinking water company.
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specific case study, the data used and the test applied are presented. Taking advan-
tage of feedback sessions, it was possible to implement additional expert knowledge
in the determination of faulty data of two utilities. Only the analysis for Company A
will be discussed in this chapter.

4.2 Data and Proposed Data Validation for Company A

The utility currently monitors 73,000 variables (simultaneously) for drinking water
and 23,000 for wastewater. It is intended here to compare current Company A’s data
validation with a proposed data validation. For comparison purposes, the proposed
data validation is composed of simple tests. The four tests are:

• Verification of boundaries
• Verification of timestamps
• Verification of flat values
• Verification of jumps

Data was collected from two sources the Pumping Stations (PS) for the whole
system and Water Quality (WQ) data at Waste Water Treatment Plant (WWTP) I and
WWTP II. Data from the pumping stations was analysed only for the identification

Table 2 Overview of data and techniques used for validation

Company Datasets Remarks Action
Current
validation Techniques

Company
A

Water
quality
WWTP I
production

One location:
Temperature, pH,
turbidity. Com-
pany A has a built
up system that
labels the data
with different
flags

Compare identi-
fication of
anomalies with
own system and
with registration
of maintenance
activities or
reported
incidents

Data is vali-
dated auto-
matically by
the system

Simple test
confusion
matrix

Flow
City A
Pump
stations

Large-scale City
A. 5 pumping
stations. Com-
pany A has a built
up system that
labels the data
with different
flags

Data is
Validated
automatically
by the system

Data aggre-
gation
regression
Knowledge
based

Energy
City A
Energy
provider

Large-scale City
A. 5 pumping
stations. Data
comes from a
third party. No
flags available for
this data

Data from a
third party not
validated by
Company A

Data aggre-
gation
regression
Knowledge
based
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of faulty data of timestamps and consistency current DQC. Data from WQ corre-
sponds a total of four time series and three different variables (i.e. temperature (1),
pH (1) and turbidity (2)), from their filtration processes.

Data collection corresponds to time series in the period between 1 January 2016
and 31 December 2017. After a visit to the facilities of Company A, it was verified
that it is also possible to fetch data directly from their data warehouse. Values
interpolated at different resolutions can be obtained. However, for the time being,
a resolution of 1 min for all variables was selected for further analysis, with the
exception of energy use which is provided by the energy provider at a 15 min
resolution.

Data was provided as CSV files. Data contains four fields (columns), (A) the
sensor ID, (B) the timestamp, (C) the measured value and (D) a status of signal’s
health, established by the system. Such pre-screening DQC is split in four different
categories as flags: (1) Good data, (2) Faulty data, (3) Dubious data and (4) Out of
range. It was not possible to determine the specific rules which drive the definition of
different categories as they are automatically triggered by the DQC system of
Company A.

4.3 Results Obtained

4.3.1 Water Quality Data at WWTP I and II

For each time series, the corresponding number of flags identified in the data is
presented in Table 3. It is evident that there are a limited number of flags identified
by the system. This is indeed a cumbersome task for Company A as to our
knowledge more than 73,000 variables are updated every minute by their system
only for drinking water.

Subsequently the proposed data validation has been applied. The confusion
matrices (Table 4) present the comparison between the observed faulty data in the
current data validation, and the ones identified by applying the proposed data
validation (KWR). If any timestamp sample is identified as faulty data by any of
the simple tests proposed, then data is considered faulty. There are 3 possibilities:

• When both DQC schemes agree in the identification a Yes-Yes coincidence is
identified. This can be understood as a validation of Company A’s validation. For

Table 3 Number of flags present in water quality data from Company A (% ¼ percentage of total
number of timestamps)

Treatment plant Acronym

pH Temperature Turbidity

(�) % (C) % (%) %

WWTP I L01 25 0.00 33 0.00 30 0.00

WWTP II L02 N/A – N/A – 67 0.01

N/A not available
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a perfect agreement among the two analyses a Yes-Yes cell must contain all faulty
data flags for both DQC schemes.

• In the case that the current Company A’s DQC is unable to identify a faulty data
compared to the one proposed, a No-Yes coincidence is identified.

• In the case that the proposed method is able to identify faulty data, while the
current validation of Company A is not able to do it, a Yes-No coincidence is
identified.

It is also of interest that for all variables the number of faulty data identified with
the proposed validation is larger for this analysis than the number of flags obtained
with the current one of Company A. There are two possible reasons for this. Either
the proposed data validation is more compact and sensitive to faulty data or there is a
need to improve the current data validation of the utility. In the first case, this is a
disadvantage for the operatives, as this will translate to a large number of verifica-
tions required. For example, temperature data in WWTP I confirms more than 1,200
flags for a verification during a 2-year period, or almost two flags per day. As it is

Table 4 Confusion matrices of water quality data for company A’S and proposed DQC

pH
KWR

Temperature
KWR

Yes No Total Yes No Total
Co

m
pa

ny
 A

Yes 25 9 34

Co
m

pa
ny

 A

Yes 29 4 33

No 254 - No 1250 -

Total 279 Total 1279

Turbidity II
KWR

Turbidity I
KWR

Yes No Total Yes No Total

Co
m

pa
ny

 A

Yes 61 6 67

Co
m

pa
ny

 A

Yes 20 10 30

No 187 - No 39 -

Total 248 Total 59

The significance of the colors is linked between this table and Figs. 7, 8, 9 and 10. The blue color
and yellow color are represented both in this table and in Figs. 7, 8, 9 and 10. This means that the
cases represented in the figures correspond to specific cases of Yes–No and No–Yes which are
presented in this table
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now, data validation for Company A is already cumbersome, so the possibility of
performing such task for more than 73.000 variables seems impossible to come to
reality. A calibration process of the parameters for each of the variables is required to
be performed on individual basis. In the second case, it is possible that the proposed
data validation has indeed identified additional faulty data. Although this may sound
controversial, some examples are presented to discuss the reliability of DQC of
Company A.

Figure 7 presents the time series for pH at WWTP I. The range of variability of
pH is quite small due to the need by Company A to keep its magnitude within a
narrow band. However, there are some spikes present in the data which are identified
both by Company A’s system and the proposed data validation.

In Fig. 8, time series of temperature in WWTP I is presented. In this case most of
Company A’s system flags are captured by the simple data validation proposed, and
indeed three time windows in which the possibility of faulty data were identified are
presented. Such time windows are centred in 2016 around April 18th, May 22nd and
December 29th.

The case of turbidity is presented in Fig. 9 (in logarithmic scale). Here the most
relevant feature for data validation is that the time series presents jumps at different
periods. Such jumps (drifts or changes in variance) occur during 2016, around July
1st and in 2017, around 3rd of April and 9th of August. This can be due to a
modification in the operational conditions of the treatment plant, given that data
corresponds to the filtration system of the treatment plants. Without further infor-
mation it was not possible to elaborate a hypothesis on this change of behaviour.

A duplicate analysis for the same variable, this time at WWTP II, (see Fig. 10,
vertical axis in logarithmic scale) shows that Company A’s flag system tends to allow
higher values of turbidity as normal events. An example is the spike in 2016, during
April 1st. This could have an operational reasoning; however this behaviour is not
identified in the logbooks provided by the utility.

On the other hand, there are some time windows in which the simple tests
identified plateau values registered in the raw data, while Company A’s system
was not able to do so (see Fig. 10). Such time windows are identified in 2016 around
December 22nd and in 2017 around September 26th.

It was possible to identify most of the faulty data, without previous knowledge of
the system rules. However, in some cases with the simple tests, some additional
“likely” faulty data was identified among the time series. This does not mean that the
statuses provided by Company A are not reliable enough, rather than one of the
detection rules presented here (i.e. flat value detection) may not be currently
implemented inside their data warehouse.

4.3.2 Pumping Stations Data

There are a total of five pumping stations (PS) in City A system indicated with the
following abbreviations: WPK, AVW, HLW, OSD and HLM (see Fig. 11).
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For each of them data of flow, pressure and energy use were available. Pressure is
not presented here. Flows (m3/h) have a time resolution of approximately 1 min,
while energy use (kWh) contains data with a time resolution of approximately
15 min. The available data covers the period between 01 January 2016 and
31 December 2017. Data delivered by the utility contains the system’s flag for
DQC. The flags are categorized as 0 and 1. A flag of 0 can be considered as Good
data, while flags of 1 considered as Faulty, Dubious or out of range data.

The time series of the flows are presented in Fig. 12 and the energy use in Fig. 13
discriminated for each pumping station. In such figures, the flag status of the utility
(Company A) is presented as red lines in the corresponding timestamp. If data is
considered as valid or Good, the red line has a value of zero. The proposed data
validation identified the timestamps at midnight as faulty data, but these have been
removed.

For flow time series (see Fig. 12), the largest amount of flags is found at PS OSD
(6,769 or 0.64% of the TS). The lowest number of flags is observed in the PS HLW
(41 or 0.004%). In the case of PS HLM (see Fig. 12e), in the period between March
2016 and May 2016, there is no data of flows, and this drop is not identified by the
system flags.

The total number of flags identified in the raw data for each pumping station and
variable is presented in Table 5. It is of notice that no anomalies are identified by
either the system of the water or the energy utility.

For energy time series, there are no flags identified by the system. The data is
provided by a third party. Energy use at PS HLM (Fig. 13e) displays drops during
extended period between February, March, April, and May 2016. After obtaining
feedback from the utility, it was confirmed that this period corresponds to a main-
tenance of the pumping station. In addition for OSD PS (Fig. 13d), raw data contains
a large number of pump switches (values ¼ 0). This can indicate no registering of
data or that indeed the pumps are shut off.

Fig. 11 General location of pumping stations in city A (source: company A)
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4.4 Anomalies Within a Day

Subsequently, data from each time series has been processed to identify if there are
particular periods, throughout a daily operation (in 24 h), when faulty data is more
likely to occur. For this reason, data has been rearranged and categorized as hourly
data, disregarding the dates. Such analysis is presented in Fig. 14 for flows and
Fig. 15 for energy use. Due to these figures being a similar analysis of time series, red
dots represent the same faulty data flags on current data validation by Company A
(Table 5).

In the case of flows, most of the flags are present during the peak consumption
hours. However, the faulty data detected does not correspond to high or low values
either but to intermediate ones. In the case of PS WPK (see Fig. 14a), there are
3 values constantly picked by the system as faulty data near 4,000, 3,390 and
2,800 m3/h. In the case of pumping station AVW (see Fig. 14b), there is a value

Fig. 12 Time series of flow at five pumping stations of company A. Faulty data reported by
Company A displayed with red lines. Vertical axes are different to allow visibility of time series
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constantly picked by the system as faulty data near 4,510 m3/h. In the case of
pumping station OSD (see Fig. 14d), the predominant faulty detection value is
0 m3/h between 9 am and 11 am. In the case of PS HLM (see Fig. 14e), there is a
value constantly picked by the system as faulty data near 346 m3/h (all day) and near
600 m3/h (between 6:30 am and 13:30 am). Once again, this is consistent with a

Fig. 13 Time series of energy use at five pumping stations of Company A

Table 5 Number of flags and
percentage from total of
timestamps from raw data
provided by Company A

Pump station

Flow Energy*

(m3/h) % (kWh) %

WPK 475 0.05 0 0.00

AVW 266 0.03 0 0.00

HLW 41 #0.00 0 0.00

OSD 299 0.03 0 0.00

HLM 6,769 "0.64 0 0.00
aEnergy does not contain reported anomalies in the data. " indi-
cates highest percentage of anomalies. # indicates lowest percent-
age of anomalies among pump stations
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disruption of the system. After a feedback session with the contact person from
Company A, it was discovered that these specific values for which data is identified
as faulty corresponds to the period when data is fetched to the data warehouse, and it
is flagged as faulty by their system. The explanation provided is that because there is
always a delay for the data transmission, triggering the flag in the system. This
information became useful as it can be used to update their current DQC to take this
into account.

The variation of energy consumption during the day shows that the three larger
pumping stations (WPK, AVW and HLW) have a similar pattern to the one of flows.
The highest range of variability of energy use during the day is present for WPK
between 5:00 and 9:00 am (see Fig. 15a), midnight to 5:00 am for AVW and HLW
(Fig. 15b, c). For OSD (Fig. 15d), there is a large variability of energy consumption
from 11:00 pm and during the following 6 h of the day. In the case of HLM
(Fig. 15e), the existence of gaps in the data (previously discussed) creates two

Fig. 14 Scatter of flows data at each pumping station during a day. Includes anomalies obtained by
current data validation of Company A (red dots). Horizontal axis presents the hour of the day
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different levels of energy consumption. A near-zero level (associated with mainte-
nance periods) and what can be called a regular or central pattern.

4.4.1 Finding Faulty Data by Comparison. Water vs Energy

It is possible also to develop a comparative analysis of water production vs energy
use. In general, one may expect to have a one-to-one relationship among both
variables, and subsequently values which do not follow such behaviour can be
associated as new faulty data.

For this, the data of each pumping station is aggregated for flows and energy to
obtain the total. If a particular timestamp contains an anomaly on a pump station, this
entire timestamp is flagged as dubious. Subsequently the data from total flows (every
1 min) has been aggregated to estimate the total flow delivered by Company A

Fig. 15 Scatter of energy use at each pumping stations during a day. No anomalies reported by
third party
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(every 15 min). The time series of accumulated flows itself will not provide
additional information, as the anomalous timestamps are removed. For that reason,
a daily frequency of the total flow of City A in time every 15 min (horizontal axis)
and with a flow resolution of 250 m3/h (vertical axis). The obtained result of the
bivariate probability is presented in Fig. 16a. In fact, Fig. 16a is a representation of
the flow pattern of the city for 2016.

Figure 16a shows a double peak consumption (as expected) during the early
hours of the morning (05:00–09:00) and during the dinner time (17:00–19:00). On
the other hand the Minimum Night Flow (MNF) occurs after midnight
(01:00–04:00) with a high probability.

Another output which can be obtained from data validation perspective is the fact
that some samples correspond to a large demand consumption around 10:00.
Although their probability is low, it is evident that such events have occurred in
City A during the last 2 years. In fact, the highest registered values for the entire
system occur for this particular time of the day. In contrast, some samples show that
there has been a lower demand consumption than the average trend at 11:30. There

Fig. 16 Bivariate probability of (a) total demand consumption and (b) total energy use in city
A. Anomalies have been removed. The colour represents the probability of total flow of City A at a
certain 15 min interval during the day. Red values represent a higher probability, while grey values
correspond to low probability
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was no possible explanation identified by the utility for such atypical pattern
variation.

Another possible use of this analysis for data validation is to perform a correlation
analysis of flows with respect to the energy use obtained from the utility. In fact, as
presented in Fig. 16b, the energy use pattern follows obviously a similar trend than
that of the flows. As a matter of fact, this is not distant from the current operation of
the system as a single District Metered Area (DMA), or fully interconnected WDN.

Similar to what was done in the case of flows of the five pumping stations. The
obtained histogram of the bivariate probability of energy use in City A is presented
in Fig. 16b. As it was the case of flows, there is a double peak in the energy
consumption (this is expected) and a higher probability during the MNF.

From a data validation perspective, it is of particular interest that in this case a
larger number of timestamps occur with low probability for energy consumptions
under the average pattern (grey values), particularly during the hours of
06:00–10:00. However, given that there is no indication of status or flag data for
any of these time series, it is not possible to conclude whether this is due to data
anomalies or to a regular operation of the system. As a hypothesis, most of these low
values below the trend of energy pattern can be attributed in part to the fact that there
is a huge number of pump switches for all PS’ as it is presented in Fig. 15. Of notice
is also that such pump switches identified in the energy consumption are not
represented all the time in the flow data, mainly because pump switches occur at a
1 min resolution, while energy is a cumulative variable stored every 15 min.

From a feedback session with personnel from the utility, it was possible to
determine that such behaviour of low energy registrations is possible. Sometimes
during the mornings energy is self-produced by the utility from renewables, and the
third party (energy company) is not aware of such energy influx. For that reason,
there is a deviation between water and energy used for pumping which is not
registered by the energy company. In this case, expert knowledge of the daily
operations and workings of the utility became far more relevant; otherwise all
such data would be flagged as faulty by a data validation system.

4.5 Best Practices and Issues in Data Validation Identified
in the Case Studies

The following results are obtained from interviews (questionnaires, personal com-
munications and feedback sessions). These are resented based on the analysis of four
companies contributing data and not only based on the presented results of the
previous sections. A summary of best practices and issues is identified (Table 6)
and the issues identified during the pilot of this bird’s-eye view (Table 7).

A general issue that arises from the comparison of the four companies is the lack
of standards. There are different types of registration protocols and standards used by
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the companies. Additionally, there is a lack of knowledge about how data is
validated by third parties, e.g. energy companies.

Among the utilities the purpose of validation is very diverse, for example, water
flow, billing, determining the water balance, identifying leaks and changes in
turbidity due to new filter installation. Depending on the objective the requirements
of the validation change. The following issues have been identified that hinder the
potential for implementation of more complex/advanced data validation techniques:

• Known deviations and operations are usually poorly logged by the utilities, or
when this is done, it is very limited to some variables across utilities.

• Lack of specialized manpower to perform this task on a regular basis: a team
consisting of both data scientists and hydraulic engineers is required.

• Specific techniques for data validation are still hard to be adopted because there is
no overview regarding which data are needed for each of them.

Table 7 Issues found during this interviews

Issues

Company

A B C D

Data storage integration. Different databases or a single database. If multiple
DB, then sometimes data is not linked one to one

x x

Lack of overview of metadata: Difficulties to track additional information,
e.g. log books of maintenance, data is still in different databases stored

x x x

Lack of priorities/time to (at least) tag the large number of signals and known
events

x x

Problems related to the interfaces X

Current approaches are often somewhat ad hoc x x

A lot of techniques, but still data validation/correction is largely based on expert
opinions

x X

Own customize system, data models and tools (not compatible with other
companies)

x x X

Only a small percentage of the data is validated x x x X

Vulnerability of failure of servers, data from third parties x x x

Black box in the built-in tools. Automatic filtering of suspicious data and not
clear which rules they use to validate the data

x x

Table 6 Best practices identified during the interviews

Best practices

Company

A B C D

Data scientist works together with a domain expert X

Clear responsibilities x X

Validation rules reported X

Implementation of automatized routines which allows continuo validation of
some datasets

x x X

Validation of aggregated data X

Implementing pilot projects to learn from it x
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Although only a small fraction of the data is validated, all of these data are
potentially still used as input for different types of models, e.g. reliability analysis of
predictions of systems performance under certain scenarios. However, this is dan-
gerous as spurious data supplied to models will provide spurious results of model
simulations.

Significant differences in the resolution of different parameters were also
observed defined by the frequency with which they are stored in utility databases.
For example, the year of installation of pipes usually has a resolution of 1 year. On
the other hand, water quality data for turbidity can be stored with timestamps every
5 s in a database. However, each company has its own temporal resolutions for each
variable.

There is still a lack of knowledge about how to first select the appropriate
technique for validating a given dataset and secondly how to fine tune the parameters
of each validation technique, to minimize the effort between identification of
possible anomalies and extreme events in the system with high accuracy. All utilities
face the same challenges when defining flags for data validation:

• Too many flags, (false-positives) operatives become reluctant to perform verifi-
cation and data validation, and the trust on the data validation diminishes.

• Too few flags and robustness is lost, as water companies would not be able to
differentiate between a regular event and extreme event and a real anomaly.

• Changes in the system is not always recorded or archived in the historic data. This
is a challenge when the system configurations change dynamically (e.g. in the
case of Company C).

5 Discussion and Recommendations for Future Work

5.1 Introduction

Data quality is a key consideration for the reliable functioning of drinking water
systems, as data are used to monitor and operate systems, to bill customers, to report
the performance of the company and to feed different types of models. Improving the
quality of the data and making it more accessible will benefit every department of a
company.

The following sections discuss a number of recommendations and future work in
the field of DQC for drinking water utilities.

5.2 Recommendation Regarding Future Work

During the survey of the water companies, it has been evident that most utilities
apply diverse methods of DQC. One of the features which is lacking across is a
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degree of standardization of DQC. A proposal for a Dutch initiative for standardi-
zation of DQC for drinking water utilities is suggested as a possible follow-up of this
work. Such a task might require the development of a tool which could help
operatives with the task of daily time series analysis, IVS, regression, interpolation,
data smoothing, data aggregation and data correction.

5.2.1 Standardization

Defining when the quality of the data is good enough is case specific. Standardiza-
tion can help to 1) understand common problems among utilities, 2) speak the same
language so that similar issues can be addressed across utilities, 3) apply the same
methods and 4) use the same tools. Challenges for which data standardization can
provide a solution including:

• Allowing integration of data that come from different sources, origins and
formats

• Automating data control and correction (support to automate processes) – less by
hand and subjective handling of data

• Allowing faster and better analysis and understanding of processes (more objec-
tive, reproducible and comparable results)

• Improving and facilitating reporting and compliance
• Reducing cost (and time) by providing certainty of units, protocols, event

types, etc.
• Allowing data sharing and implementation of hydroinformatics tools
• Facilitating interoperability of (IT) tools within a company and between

companies
• Allowing comparison within departments or companies, e.g. benchmarking
• Enhancing transparency and clarity about what can and cannot be done with data

Water companies can use as a starting point, relevant experiences of other sectors.
There are several standards which are relevant to the water sector, developed for
instance within Internet of Things (IoT) initiatives (using smart appliances) [90, 91]
or smart cities initiatives [92, 93]. Standardization within the water sector is a subject
that the European Commission [14] is very interested to achieve and promote, and
where different actions need to take place, but bottom-up action is also needed from
utilities.

Data Model

It is recommended to adopt and adapt a framework where different dimensions and
categories are clearly identified not only for the data content, data management, but
also for diverse users considered. Currently, data from the utilities are highly
variable in volume and resolution, format, metadata and shape. However, they all
measure the same types of variables. It would be very helpful to have a standard data
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model for DQC control that can be agreed upon at a (inter)national level in due
course. Given that the customers are relatively the same in the country, this implies
that the water utilities can develop an intercompany data model for water accounting,
with the possibility to extend it in the future as new variables are incorporated in their
data warehouses.

Data Collection Redundancy

As presented in this chapter, the analysis of the data diet of large data collections
may help utilities identify which sensors are more reliable and how much data
storage is required. It is not yet clearly known by utilities which variables are
correlated among different sensors. An effort should be made to develop an analysis
of redundancy with the utilities using their data mining techniques discussed in this
chapter.

Aggregation of Data

Aggregation of data is performed by all companies, for specific purposes. Additional
data analysis which is of interest for all utilities can be introduced to obtain regular
water balance calculations. All utilities have to account the water that is produced
and billed. However, it was identified that the utilities have serious concerns about
the limits of the anomalies in the water balance. Given that non-revenue water
(NRW) is not a serious concern in the Netherlands, the main issue is to be able to
identify when the water supply system presents a deviation from its regular pattern.
As demonstrated in this chapter, for some utilities, the need to establish such
boundaries for water balance is a current issue. Even with advanced tools for
water accounting, there are deviations present in the data of water balance for all
utilities. Therefore, it is recommended to implement advanced techniques such as
model based validation to tackle this issue. For this, a pilot for a DMA configuration,
with an optimal time step and additional info (e.g. pressure, flows) and expert
knowledge (e.g. operators’ knowledge and logbooks of operations and mainte-
nance), can be compared with a simulation model to determine anomalies.

Data Correction Techniques

Most methods applied for incomplete time series have been developed for surface
and groundwater hydrology [39, 94, 95], and some applications have been made for
WDN [61]. This chapter and its supporting research did not address the issue of data
correction techniques. A proposal was made to continue the process of using
hydroinformatics tools in the Dutch drinking water companies. The goal here
would be identifying specific techniques for data correction which may be suitable
for a subset of WDN variables. If for the case of data validation the spectrum of
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techniques was broad, a similar content is expected in the case of data correction
techniques.

Data Reconciliation

The decision which must be made by utilities about which data to trust and which
data not to trust is a constant struggle. Often, during the selection of data and case
studies, a common concern was voiced by operatives of utilities about not trusting
the data of a region or DMA. However, no quantification or metric was made
available to express this in any of the cases and to our knowledge such metrics are
not available in the Dutch context. This means that expert knowledge has been
applied by utility’s experts, with prior experience in the management of their system.
However, such expert knowledge is currently only encapsulated in the minds of
experts. There are several methodologies available to transform such qualitative
decision making into quantifiable rules for the determination of likelihood of data as
being faulty. This can lead to improvements in data collection and reduce depen-
dence of utilities on specific experts if they are not available.

5.2.2 Selection of Faulty Detection Techniques

Regarding DQC, there is no one technique fits all purposes. Depending on the
monitored event/variable, different techniques with different parameters should be
applied, also according the objective of the validation.

Software tools cannot validate data by themselves. Expert knowledge is always
needed for a good determination of the parameters to perform the data validation,
especially in complex systems, such as drinking water systems.

Given the variability of datasets, number of records, timestamps, time resolution
and variables, only simple techniques for data validation have been applied for the
water utilities data presented as case studies in this chapter. So it was recommended
to the participating utilities that, in a future project, similar techniques to be specif-
ically calibrated for subsets of data from the same variables. For example, in this
chapter a short analysis of data validation for water balance is presented, but an
extensive literature on the matter is also available. This means that the possibility to
increase the identification of faulty data can be explored with many more techniques
than the ones presented here on that subject. Once this is done, then a proper
selection of best practice techniques for water balance can be established for the
sector of Dutch drinking water companies.

5.2.3 Modelling for Anomaly Identification

In this manuscript, only a short portion of techniques for data validation was
explored, and only simple tests were implemented. One of the biggest obstacles in
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applying data validation techniques corresponds to the use of modelling tools to
identify anomalies (see again Fig. 5). Several methodologies are available which
have not been implemented in this work, ranging from statistical, surrogate and
physically based models with the aim to properly define when a sample of data
corresponds to an anomaly or not. Having a calibrated model of a WDN presents the
possibility to estimate deviations between measured data and simulated data and as
such detect anomalies.

6 Conclusions

6.1 Specific Conclusions Based on the Cases Regarding
Faulty Data Detection

Data validation applied to water quality demonstrated the validity of the utility’s flag
system, as it was able to identify most anomalies. In general, data of Company A is
of good quality with a low percentage of flags issued by the system as faulty data.

The implementation of a proposed data validation in this chapter using simple
validation rules showed that the inclusion of a flat value test can improve the current
data validation procedure of the drinking water companies for water quality data.
Additionally for specific datasets such as turbidity time series, changes in the system
can be identified by using jump detection (i.e. drifts or changes in average). Further
development of the proposed data validation is the inclusion of more complex
detection techniques.

From the validation of data for water balance, it can be concluded that the
temporal data resolution is sufficient; however the process of data collection and
aggregation is quite demanding. If a water balance needs to be performed at different
intervals (e.g. 1 day, 1 week, 1 month, 1 year), the tasks of data validation would
require extensive searches from diverse sources to confirm information from log-
books, installation and maintenance records. This is highly time-consuming and it
can be improved by automation by routines.

Expert knowledge from the utility helped to clarify the validity of large collec-
tions of data from the last 2 years, i.e. the pumping station maintenance in HLM. The
integration of such expert knowledge in the system has yet to be implemented. This
is evidenced in the fact that most queries of additional data validation were solved by
internal communication ‘via-via’ and not through a complete record of operations in
any database.
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6.2 General Conclusions Regarding Data Quality Control

Data quality control is a continuous process, instrumental in achieving large strategic
objectives such as reliable and efficient drinking water system operations. Data
validation for water companies is not an exclusive task of a data scientist. It is a
collaboration between operators who understand the system and data analysts who
must validate large proportions of data to improve models and, as a consequence,
decisions. Currently only a small percentage of the data is validated, but we suggest
that in the near future, there is a need to become even more active in data manage-
ment at every level of a water company.

All involved water utilities implement individually data validation at different
levels of complexity. Although water companies face similar issues, several cus-
tomized tools/software are being developed per company. This is because each
company has its own registration and database system, as well as different specifi-
cations regarding time steps, units, storage, etc. Working together on specific
guidelines (standards) for the sector to define which datasets and methodologies
are used for validation can facilitate and speed up implementation of DQC systems
and be useful for potential future exchange of data, and, it may facilitate auditing
operations as a nationwide goal.

From the analysed cases it was concluded that there is a need to exchange data
and develop proper data models that consider not only the raw data but also
metadata, formats and characteristics of the platform.

There are several techniques to validate the data. Regarding DQC, there is no
such thing as one technique that fits all. Depending on the monitored event/variable,
different techniques with different parameters should be applied also according the
objective of the validation. Best practices and challenging issues have been identi-
fied (see again Sect. 4.3). To overcome the identified challenges a two-way imple-
mentation of DQC procedures is needed:

1. Strategic (top-down) by developing frameworks and standards for the water
sector which are compatible with standards of other sectors

2. Operational (bottom-up) by implementing cases, evaluating case studies and
sharing experiences across utilities.

To progress both, it is envisioned that utilities can start with simple cases and
techniques such as the ones presented in this chapter and steadily scale-up as the
needs and goals of the utilities are met.
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Abstract Monitoring wastewater has always been a challenge. In the wastewater
collection network, historically, there has been a lack of permanent wastewater
monitoring because of the propensity for fouling and the complications of monitor-
ing both gravity and pressurised networks. In engineering and operational terms, the
wastewater network has also been treated as a separate entity to the wastewater
treatment works which is, in reality, part of the same system. The wastewater
treatment works tends to be much better monitored depending upon the size of the
works. However this monitoring has been very much based upon single system
instrument-based control systems (e.g. a dissolved oxygen control system for an
activated sludge plant) rather than a more holistic system approach balancing the
different systems present on a typical treatment works.
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The future of both the wastewater network and the wastewater treatment works is
a much more holistic approach bringing the network and the treatment works
together and treating it as a single system. In this way, rather than operating the
wastewater treatment system for process control with the aim of protecting the water
environment, it can also be operated for resource recovery and energy efficiency
with a much wider environmental benefit.

Keywords Biosolid, Burst detection, Mogden formula, Multivariate process
control, Respirometry, Septicity, Thermal hydrolysis, Urban drainage, Wastewater
treatment

1 A Systematic Approach

Wastewater systems can vary in both size and complexity ranging from small and
simple rural catchments to large and complex urban conurbations. In dry weather,
the wastewater collection network receives both domestic wastewater from the
customer and a variety of industrial inputs which can be very mixed in nature. The
network, in the UK alone, is comprised of a variety of sizes and is hundreds of
thousands of miles long, meaning that the residence time in the sewer can vary in
time, depending on the size of the network, from a few hours to a few days. Longer
residence times can create septic conditions and build-up of debris within the sewer
(or within sewage pumping stations), depending upon whether the part of the sewer
is under gravity or part of the pressurised sewer network.

In dry weather there is normally a single output to each wastewater system which
is at the wastewater treatment works (WwTW), barring any problems within the
network which create unplanned discharges. In wet weather this system changes and
there are multiple outputs to the system (for combined systems such as those that
operate in the UK). As flow inputs increase through rainfall runoff from road drains,
the levels of flow in the sewer increase. Designed within the sewer are “relief valves”
in the form of combined sewer (or storm) overflows (CSOs), which provide relief
from the system when the flows are, in principle, dilute enough to have a minimal
impact on the water environment. The only alternative, which can happen when the
sewer is misused, is that the system floods up and into either external public areas or
into the customer’s home.

At the sewage treatment works, the focus has always been to treat the received
flows as efficiently as possible as they are received at works. This has meant
designing works so that they can take flows of up to 300% (the flow to full treatment
is often approximately three times the dry weather flow) and an increase of pollutant
load of up to 40% more. Hence the works are often designed for just treating
wastewater.

112 O. Grievson



This philosophy is changing, and a more systematic approach is being taken. At
the WTW this is designed based upon the philosophy of the resource factory and
treating the outputs from the WwTW as a product. In Fig. 1 we see the wastewater
treatment system in its entirety.

Looking at it from a systematic approach, and from a monitoring and control
point of view, the inputs into the system are not currently monitored due to the
difficulty in practically monitoring the inputs into the system. In the main, the
wastewater discharged is a calculated factor based upon the proportion of water
used if the customer is metered. If not, it is an estimated use depending upon the per
capita consumption. As the use of universal smart metering proliferates, then this
situation will improve (and is less of a problem in areas of the world with a much
higher roll out of smart metering). Inputs into the system from industrial customers
are monitored as they form the fundamental basis of the amount the industrial
customer is charged. The cost is based upon both the flow and concentration that
is being discharged utilising the Mogden formula. The last input into the system is
rainfall and runoff, which by its very nature cannot be measured but can be
monitored and predicted. This is where developments in both sensing technology
and modelling approaches can be used to predict what the inputs into the system
are [1].

There is one other “input” into the system that is even more difficult to monitor
(i.e. almost impossible to directly monitor) and that is infiltration into the gravity
system. As the wastewater collection network deteriorates, cracks or weaknesses
around joins in the pipes or manholes develop, and these allow infiltration into the
network. At its most serious, infiltration has been known to make up more flow into
the system than all of the other inputs even within dry weather flow, as underlying
soil conditions mean that, in wet weather, the soil fills and can take several months to
release the stored water into the sewer environment.

All of this has to be taken into account when looking to monitor and control the
wastewater system, and looking at it as a whole, it is important to look at the strategy
of how the wastewater system needs to be monitored and controlled. There is
underlying philosophy to a smart wastewater system and that is:

To manage the system by monitoring and control where there is a defined need, and to have
enough information to manage the system where there is not a defined need.

The ultimate aim for the wastewater system is for it to manage all of the flows that
should enter the network whilst detecting flows that should not be entering and to
convey them as optimally as possible to the WwTW in a balanced fashion. This
allows stability within, what in essence will become, the effluent factory producing
products such as water, nutrients (including biosolids) and energy.

We can achieve this by looking at the system holistically. In the rest of this
chapter, we will look at the different elements of the system as a whole and look at
the philosophy of operation that a smart system would put in place and the mea-
surement and control needs.
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2 Smart Wastewater Network

The smart wastewater network has been around as a concept since the early 1970s
when one was installed in Minnesota in the USA, and there have been a number
of notable examples of smart wastewater networks in other countries [2]. In the
Minnesota case study, the main aim of the project was to separate out the combined
system. As this was very early days in both instrumentation and automation, the
system was limited but worked well. There are numerous examples from Europe too,
including the installation of a smart wastewater network in Barcelona for the 1992
Olympics due to flooding and pollution issues. The initial solution was a €150
million interceptor sewer under the centre of the city. The smart wastewater network
solution, including three new storm water detention tanks, reduced the capital cost of
the work needed to approximately 1/3 of the initial solution.

The aims of the wastewater network in its purest terms are to collect wastewater
and to transfer it to the WTW. Where there is a combined system with combined
storm overflows, there is a risk to the environment. As the overall environmental aim
is to reduce the pollutant load, then controlling the wastewater network whilst
maximising the throughput and minimising the losses (whilst also protecting the
customer) is the aim of the smart network element of the wastewater system [2].

Several other smart wastewater network solutions have been built in cities around
the world including five in Paris, some of which have been operating for over
25 years, and one in Tokyo in Japan. The first smart wastewater network to be
built in the UK in the Eastney Catchment of Southern Water was largely based upon
modelling of the network with Innovyze’s ICMLive modelling programme with
various inputs from the network [3].

To summarise, what is the initial aim of the smart wastewater network, and what
can we learn from the examples that have been installed around the world? The main
aims are:

• To protect the customer from flooding from the sewer
• To detect blockages within the network from sewer misuse
• To prevent, where possible, the use of combined storm overflows especially in

dry weather and funnel as much wastewater to the WwTW as possible
• To facilitate the efficient operation of the entire wastewater system (including

both the wastewater collection system and the WwTW)

2.1 Philosophy of Operation

So, in order to achieve a smart wastewater network, what is the philosophy of
operation? In the wastewater network, the philosophy of operation will actually
change depending upon the underlying climatic condition. In dry weather the main
aim, in the gravity sewer, is to manage the flows so that septicity is minimised by
managing the throughput of the sewer and ensuring that the detention time in the
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sewer is minimised. However, periodic flushing of the sewer in dry weather is also
beneficial in order to minimise the accumulation of debris within the sewer, whether
this can be done in automated control or by manual cleaning of the sewer by jetting.

This is in the operation of the sewer in general, but, in dry weather, there is further
work that can be done. This involves directly detecting debris accumulation or,
by using analysis, detecting and locating areas that are either blocked or partially
blocked that will potentially cause problems when flows increase and possibly
causing overflowing of the network system. The last element of general operation
is detecting where there is infiltration into the sewer. Infiltration simply adds to the
basal flow of the sewer, taking up capacity within the network which will be required
in storm conditions.

The gravity sewer provides the base flow which is transferred to the WTW in dry
weather. Without installing gates within the sewer (which are popular in some
European sewers), there is no method of controlling the gravity sewer. It is on
the pumped sewer, where pumping stations can cause large variations in flow due
to the size of the wet well and the impact that the pumping system can have on the
treatment works. This is particularly the case where pump sizes have been increased
to resolve local flooding issues that have, in turn, caused flooding issues on the
treatment works. This is where the pumping system is larger than the capacity of the
inlet works which as the pumps are oversized causes flooding of the works even in
dry weather. Where there are combined gravity and pumped systems, the situation is
further complicated. However, at their simplest, gravity systems provide the basal
flow, and the pumped systems have the potential to cause problems with overflows
to the environment.

It is when the sewer enters storm conditions that problems in operation can start.
The flow from the gravity network cannot be controlled. The customer input,
whether it is domestic or industrial, will remain the same. The runoff from the
road network will increase, and so will any debris from the road surfaces thereby
increasing the inorganic pollutant load in the sewer. The gravity network is largely
unmonitored as it cannot be controlled. The pumped network is monitored to a
certain extent, and it is here that smart systems can have the greatest potential and
impact.

The philosophy of operation in the pumped wastewater network is to detect where
the underlying flow condition within the sewer is going to increase and to take steps
to increase the capacity of the network by pumping down the sewer to as empty as
possible thus freeing up capacity to manage storm conditions. This is shown in
Fig. 2.

Measuring level within the gravity sewer system, either measuring level in
pumping stations or flow on the pressurised system, can enable a large element of
control of the wastewater network. Where programmes, such as the Duration
Monitoring (EDM) programme in the UK, which measures spills to the environ-
ment, exist, they can be used to warn of levels high enough so that wastewater spills
to the environment. Thousands of CSO monitoring installations have been
implemented with many more planned, involving data logging and level measure-
ment to record spill events. Combined with rainfall radar data, online data analysis
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systems have been proposed and implemented to perform new real-time event
detection (e.g. [4]).

Add to this the potential of customer alarms at vulnerable customer spots on the
network, then we can begin to consider the appearance of intelligence within the
wastewater network through improved monitoring and analysis.

If we accept there is no control on the gravity system, it is by actively managing
the pumped system that we can control the wastewater network by smoothing flows
in periods of dry weather using the capacity of the wastewater collection network.
In wet weather, especially if there is active monitoring of the meteorological
conditions, then the sewer can be pumped down in advance to create capacity within
the wastewater network. This is relatively simple within the pumped system, but
complications occur when used within the gravity network. Active system control of
the gravity can be used by installing gate systems to control the flow and use the
gravity network as a flow detention system [5].

2.2 Monitoring the Inputs into the System

When you break the smart wastewater network down to its constituent parts, and
look at the inputs into the system and how to measure them, there are some distinct
challenges as well as technology that already exists.

Looking at the three inputs into the sewer as shown in Fig. 1, we have:

• Input from the domestic customer
• Input from the industrial customer
• Input from the environment

0%
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Fig. 2 Hypothetical control of the sewer levels storm without control (first 24 h) and with control
(second 24 h)
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Looking at monitoring the domestic customer comes down to whether or not
there is value in doing so or whether using an empirical (estimated) value which has
been traditional in the water industry is sufficient for purpose. Traditionally, the
amount of wastewater going into the wastewater collection network has been an
estimate of an estimate, insofar as the amount of water supplied into the potable
water network divided by an estimate of the number of customers (2.7 people per
property on average) multiplied by 90% to take into account the amount of drinking
water that never reaches the sewer (because of drinking water, water use on gardens,
etc.). This has led to a per capita consumption (PCC) figure which, in the UK at least,
has historically been 150 L per person per day.

This PCC figure has historically been used as the fundamental basis of design for
the wastewater system. The supporting mechanical water meters were of little use
however, because the meter readings were only taken every 6 months. With the
advent of smart water meters, the situation has changed, and meter readings can
now can be taken on a regular basis, e.g. hourly, thereby providing an appropriate
balance.

This allows for a better visualisation of when water is consumed and, theoreti-
cally at least, could be used to imply impacts on the wastewater system. The amount
of water metering across water companies vary greatly, and ranges from 40%
metering in some places [6] to 100% (dumb) metering in others. This is set to
increase drastically over the next few years, with most UK companies planning a
significant proportion of smart water metering of customers.

Translating this into the volumes of wastewater that are produced is difficult in
itself, and, typically, an industry standard of 90% of the potable water use has been
used as a standard for charging the customer. The accuracy of this does depend upon
the socio-economic category of the customer with more affluent people actually
discharging less to the sewer because of potable water use elsewhere (e.g. watering
gardens or topping up swimming pools) [7]. This shows that the estimations of
customer discharges to the sewage collection network are poor at best.

There are domestic wastewater meters on the market; however their uptake is
relatively low, not due to the cost of the meter itself, but more to do with the cost
of installation which can vastly outweigh the purchase cost itself. In short, it is
perceived that the cost of monitoring outweighs the benefit. This is a typical situation
within the smart water industry where the cost-benefit is not truly known, and hence
it is difficult to build business cases [8]. Technologies that are used for potable water
metering are not appropriate as these technologies require a full pipe. The only
technologies that are available would cost £200–300 installed (at minimum) which is
approximately ten times the cost of a customer potable water meter. Over the life of
a typical water meter which is normally 10 years, this would add £20–30 to a
customer’s bill for seemingly very little benefit apart from control of the network.

This is not the case for an industrial customer. For trade effluent the charging
structure, in the UK, is based upon the Mogden formula, which includes not only the
volume but the strength of the wastewater that is discharged to the sewerage network
[1]. As the cost is based upon the volume of the wastewater, there is an economic
value to measuring the flow as accurately as possible, as any uncertainty in the
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measurement could mean that the cost to the customer is higher than necessary (or if
the instrument is measuring low the cost could actually be reduced but normally
instruments, if inaccurate, will read higher than actual).

All of this comes together in the normal definition of flows that pass to the WTW
in dry weather or the DWF. This can defined as:

DWF ¼ PG þ I þ E

where:

DWF Dry Weather Flow in m3/day
P Population served by the WTW (number of people)
G the per capita consumption in m3 day
I Infiltration into the network in m3 per day
E trade effluent discharge into the network in m3/day

In the past the dry weather flow was defined as:

the average daily flow to the treatment works during seven consecutive days without rain
(excluding a period which includes public holidays) following seven days in which the
rainfall did not exceed 0.25mm on any one day

This was first defined in 1975 in the Institute of Water Pollution Control Glossary
[9]. This was redefined in a 2006 study by UKWIR and Tynemarch. An alternative
approach using the 20th percentile of the annual daily volumes of wastewater flow
was proposed, which showed a good comparison over 4,447 work years of flow data
and 3,123 work years of rainfall data [10]. This method became the Q80 method for
dry weather flow measurement and, through manipulation of the DWF formula and
knowledge of the different elements, can allow for estimation of the infiltration into
the network (as long as the population, per capita consumption and trade effluent
discharge volumes are known).

This is useful in looking at the different elements that make up the base flow
going through the sewage collection network, before the environmental inputs are
taken into account.

If measuring the customer is difficult, then measuring the environmental inputs is
even more difficult and often relies on third parties which don’t necessarily measure
in the right places for the sewerage collection network. For environmental inputs, in
the main, there are two factors to consider:

• Inputs due to the underlying soil conditions and infiltration
• Inputs during rainfall/storm events

Infiltration into the wastewater network has been a perennial issue and depends
upon the climatic conditions in a particular year and the underlying soil conditions. It
is more of a long-term issue and can only be seen by looking at flow data on a day by
day basis over a period of several years. The use of this is that infiltration into the
sewer can contribute to the basal flow, especially in wet weather periods so that the
sewer in a particular network can, for a period of up to several months, never return
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to a true dry weather flow. On a network monitoring and control basis, this takes up
capacity in the network, but, by analysis, the very nature and behaviour of the flow,
together with rainfall patterns, can give clues to the location of the break within the
gravity sewer environment. This can allow for infiltration points to be localised with
relatively small costs when compared with CCTV methodologies of infiltration
identification.

The last input into the sewage collection network is, of course, rainfall. The main
detection method is a combination of weather radar, rain gauges and artificial
intelligence, enabling the prediction of the impact of a rainfall event on the sewer
[11]. Although weather radar is well established, the current techniques in terms of
the wastewater network have not allowed the resolution of data that is required, and
there are very few techniques in place that will then translate this into impact on the
sewerage environment using a model-based approach.

The main challenge is one of resolution. When the UK meteorological office
looks at weather, they look at it on a national basis, and the resolution of the weather
radar is for grids that are 13 km wide and 13 km long (169 m2 grids). Allowing for
the surface area of England and Wales, this splits the UK up into 895 grids. There are
approximately 10,000 WTW in this area of which 3,742 works treat greater than
50 m3/day and are numerically consented. Hence, in reality, the Meteorological
office data has not currently got the resolution necessary for a smart wastewater
network. In this case, the resolution of the weather radar data has to be much finer,
and also work in conjunction with rainfall data to predict what the impact of a storm
event will be on the network. This moves C-Band Weather radar (the technology that
the Meteorological Office use) to X-Band Weather radar which measures on a much
smaller scale, with the disadvantage that many more radar units are required
[12]. Rico-Ramirez et al. [13] show the considerable uncertainty in radar rainfall
estimates and how this raises implications for modelling. Also, in Schellart et al.
[14], the difficulty of using rainfall nowcasts for predicting sewer flows is discussed.

From this it can be seen that the challenges of measuring the inputs into the
wastewater network are large with:

• Domestic wastewater monitoring not established, as it is not financially viable.
• Industrial wastewater monitoring well established and input volumes known,

although the accuracy of the installed flow meters are not always known, as the
maintenance of the meters is sporadic.

• Inputs from infiltration can be estimated but are very changeable due to climatic
changes and underlying soil conditions.

• Weather radar and the impact of rainfall on the network system are improving as
technology improves, and there are some systems available at the current time
that will allow this to happen.
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2.3 Monitoring the Network and Outputs from the System

Within the wastewater network, the challenge is that they are three types of network,
the more traditional gravity network that everyone considers the sewer to look like,
the pumped network and those that are a mix between the two. Of course, the
different types of network behave in different ways and require different types of
instrumentation to monitor them, although the wastewater network is probably the
largest area of the water industry infrastructure which is largely unmonitored.

The pumped network, in some ways, is very similar to its potable water cousin
consisting of pumping stations and rising mains. The risks of this network are mainly
centred around the risk of pipe bursts, due to blockages or pipe condition and
overflowing of pumping stations caused by them being overwhelmed with flow,
by power failures and by pump failures or simple blockage.

Like the potable water network, there are a few areas where a smart water industry
can have large potential impacts around:

• Wastewater pumping station control
• Wastewater system control
• Wastewater network burst detection

Wastewater pumping stations have typically had simplified pumping station
control, with either floats or level control to ensure that pumping stations pump
when they need to pump in isolation from any other aspect of the wastewater
network. They will normally have an overflow monitoring device that monitors
flow through the emergency overflow to the environment, which is there in case of
pump blockage or pump failure. As the size of the pumping station increases so does
the complexity, but the principle remains the same.

As technology has developed, and the monitors and control systems can do more,
then the intelligence of the sewage pumping station has increased. In addition to
simple level sensing, other aspects of sensing have been incorporated including:

• Current monitoring for pump performance
• Flow monitoring for discharge rates
• Pressure monitoring for burst detection
• Implied flow meters from variable speed drives and virtual drop tests to imply

inflow
• Control systems to reverse pumps that can attempt to free pump blockages

automatically

Further developments in the terminal pumping stations can put control in place to
ensure that the pumping stations coordinate with each other to smooth the flow
entering the WTW, to ensure more efficient operation of the entire wastewater
operational system.

Current monitoring strategies, as well as the use of Variable Speed Pump Drives
used to imply flow from the power required to operate the pump, show the perfor-
mance of the pump and can indicate when the pump is starting to wear. The
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installation of a flow meter in the rising main can provide a secondary verification of
this, which is especially useful on large pumping stations. It can also be used to allow
for visualisation of what is happening at a pumping station and inform how to react
to alarms that are raised on particular asset. Imagine a scenario where it is raining, all
of the pumps available are running, and the maximum output of the pumping station
is being pumped; and yet there is a high-level alarm. In this situation everything
possible is being done, but the sheer volume of flow is overwhelming the pumping
station. The same situation without a flow monitor would mean it would have to be
visited to assess the situation, whereas a flow meter would definitively confirm the
actual situation.

More recently there has been work with pressure monitoring on the rising main
aspect of the wastewater network. This uses high-resolution pressure monitoring to
predict when the rising main is going to fail, which is working along the same lines
as pressure transient monitoring in the potable water distribution network. The full
understanding of the methodology of using pressure monitoring to predict pipe
failure is not fully understood, but it is currently being studied.

On the pumped wastewater network, the ultimate aim is for it to work with the
gravity network with the main control point being the inlet of the wastewater works.
This provides flows to the treatment works that are, as far as possible, equalised
across a 24 h period with the ability to react to a model-based approach to reduce the
amount of wastewater discharged straight to the environment through storm over-
flows in wet weather.

The gravity network needs to work in conjunction with the pumped wastewater
network although it behaves in a completely different way, and the monitoring of the
gravity wastewater network has different challenges.

In the gravity network, the main question is what to measure, and where, within
the network. There is a school of thought that believes that level monitoring of the
sewerage system can be used in its entirety to monitor the situation in the network
and allow the required element of situational awareness. Another perspective is that
the use of flow monitoring in the wastewater network also adds another dimensional
element. As there aren’t many measurement technologies that will measure part full
pipes, flow measurement within the sewer is limited to Doppler style area-velocity
devices that can either be submerged in the flow (and are at risk of damage due to
fouling) or are remote from the flow (which have limitations over where they can be
installed and need a minimum size of pipe). There are technologies that are currently
being researched, looking into measuring the surface patterns of the flow inside the
pipe to measure the flow rate [15].

What value do each of the measuring techniques bring to the wastewater net-
work? Level within the wastewater network can be used to simply indicate how full
the sewer is. This is a very powerful tool as it can indicate the current available
capacity within the network and, together with a wastewater network model and
meteorological detection methodologies, can be used to calculate whether there is
sufficient capacity within the network to manage a potential storm event that is
happening in the next few hours. This is a crucial element of a smart wastewater
network. Level, when measured at several different points, can also indicate where
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there is potentially a blockage within the system as a raised level at one particular
point, and a significantly lower downstream would indicate this. The problem of this
is twofold:

1. How many sewer level monitors are needed to provide a resolution good enough
to provide situational awareness and where within the network should they be
located, as it is not financially viable to monitor everywhere?

2. How can sewer level monitors be installed at a reasonable cost?

Moving on from just using simple level measurements, the rate of change can also
be used in a number of situations. The simplest of these methods is to measure the
rate of change within a pumping station wet well. Some of the simpler control
techniques use the rate of change to predict the flow rate within the wet well to imply
flow by conducting a smaller version of a drop test. This requires an outflow pump
rate (or flow measurement) to provide a measure of what is leaving the system and
the rate of change within the wet well to measure the increase of volume over time
(i.e. the flow rate).

Within the gravity network, any unusual change of level can be used to predict
where there is a blockage (i.e. where a downstream level is lower than an upstream
level there is a good indication that an unusual situation is occurring that needs
further investigation).

When flow monitoring of the gravity network is brought into the equation, what
benefit does it bring over level monitoring in isolation? Looking at flow monitoring,
it is even more difficult to install than level monitoring and, unless it is used to
control aspects of the network, or measure particular inputs into the network with an
approach similar to the potable water networks DMA approach, then it could be used
to indicate particular areas of risk of infiltration within the gravity network.

Wastewater networks require regular inspection in order to prioritise and perform
effective maintenance. Currently wastewater networks are generally inspected using
CCTV, taking one of two approaches. The first requires a camera, attached to a semi-
rigid wire, to be pushed through the network. In doing so the collected footage is left
to be analysed later by a trained engineer. Although quick to collect, the footage
gathered is often of lower quality as the camera does not travel smoothly through the
pipe. Alternatively a camera can be attached to a remote-controlled pig which is
driven through the network. A skilled operator can often identify and record faults
whilst operating the device. In doing so footage takes longer to collect, but does not
require further analysis and is often of higher quality. CCTV (along with GPS) is the
most commonly used technique for locating pipes and internal inspection [16]. The
Water Research Centre (WRC) in UK devised the first condition grading scheme
that provides protocols and guidelines for formally assessing current condition of
individual pipes using CCTV inspection [17]. These can be somewhat subjective if
performed by a human, and the latest research has been exploring the automation of
CCTV footage.

With infiltration there are a number of passive technologies that have been
developed to look into the state of the gravity wastewater network as well as, in
some cases, the pressurised network. These range from looking at the thermal
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characteristics of flow entering the network, where infiltrated flows are warmer
than the flows already within the network, to using acoustic waves technologies
employed in a number of techniques that can be deployed externally or internally to
the pipeline, to measure comparative pipe condition to see if the assets are deterio-
rating. Together with CCTV surveys and the utilisation of more advanced techniques
such as pattern recognition, these methods can be used to identify possible areas of
infiltration in gravity sewers, or potential for bursts in rising mains [18].

The most recent innovation for inspection is passive untethered platforms includ-
ing free-swimming solutions (which advect with the ambient pipe velocity) that can
complete long inspections in a single deployment. There is increased interest in the
utilisation of robotics. A comprehensive journal review [19] of robots for pipeline
inspection revealed that robots currently available are mainly laboratory prototypes
designed for large diameter pipes, human-controlled, heavy (tens or hundreds of kg)
single devices suitable for a single short-duration intervention. The last major area of
monitoring within the wastewater network is at the combined sewer overflow (CSO),
and this was driven in the UK by a strategic government decision under Ministerial
Direction in July 2013, to monitor the vast majority of CSO’s within the water
industry with event duration monitors (EDMs). This decision was made in order to
protect the environment from discharges to water courses through CSOs and other
discharges to the environment, including pumping station overflows and storm tank
overflows, when they either shouldn’t be taking place or are happening more often
than is reasonable.

A risk-based approach to the EDM programme was taken by the Environment
Agency looking at CSO’s in areas where the amenity or economic value is high, and
where an overflow is suspected to be a potential problem given the highest priority.
This goes all the way to the other end of the spectrum where an overflow is of
low amenity or economic value and is known not to overflow and hence is given
the lowest priority. The philosophy of the programme was to discover where all the
overflows were, and to monitor when and for how long they overflow to the
environment. With the highest-risk areas requiring much more detailed monitoring,
this effectively maps the exact area of impact that the sewerage network has on the
wider aquatic environment. In the programme, only low amenity overflows with less
than 20 spills per year were excluded, and, in practice, many of the water companies
will have 100% coverage before 2025.

As with all of these initiatives, in practice, they have a much greater operational
benefit than the project initially envisaged, and, as part of a “smart” wastewater
network, the EDM programme has the potential to be used to measure network
performance. It can also identify areas where the network is stressed and where
investment is required in order to provide further capacity, either through reduction
of the basal flow through infiltration reduction, increasing the capacity of the
wastewater network, or potentially increasing the monitoring and control of the
network to relieve periods when the wastewater network is having capacity issues
and is under stress.
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2.4 The Opportunities and Barriers for the Smart
Wastewater Network

By putting intelligence into the wastewater network, there are a large amount of
benefits. These include an improvement in environmental water quality and
balancing network improvements to counteract the ever-tightening consents at the
WTW. Consent conditions are reaching the point where the level of treatment
required to comply with environmental permits are intensive enough to have both
a large negative impact on the air environment through increased energy consump-
tion and having an impact on resource issues through larger quantities of chemical
consumption to treat to lower and more exacting levels. By providing better control
of the impact, there is potential for providing a greater level of pollution control for a
lesser overall environmental and financial impact.

However there are technological and financial barriers to the implementation of
smart wastewater networks including:

• The development of wastewater network models for the purpose of operational
control rather than engineering design, which is where most of the wastewater
network models currently fit.

• Knowledge of the financial and environmental benefits of better monitoring and
control in the wastewater network. There is a perceived benefit of getting a better
environmental performance overall and being able to balance this with a potential
loosening of environmental permits at the treatment works but as yet this is
unproven.

• Integration and performance of meteorological artificial intelligence to feed into
an operational model of a smart wastewater network. Enabling a measure of the
impact of potential of storms on the network.

• The proliferation of measurement in the wastewater network, where the barrier at
the current time is both technological and financial on the installation front, quite
aside from the costs of maintenance of the instrumentation in terms of risk to
operating staff and also the cost of conducting it.

• The methodology of the integration and interaction between the wastewater
collection network and the WTW is largely unproven at the present time.

These issues need to be resolved before smart wastewater networks can prolifer-
ate throughout the wastewater treatment system as a whole, and there is a potential
for them only to be installed on the larger, higher value networks where large
populations are served, before the technology proliferates into the smaller networks
systems.
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3 Smart Wastewater Treatment

The key to the smart wastewater treatment plant is consistency. A WTW is a system
that is naturally unstable. It is therefore through measurement and control that the
operator can achieve some sort of stability within wastewater treatment in particular
and the wastewater system in its entirety. One of the keys to this lies within the
network, where possible smoothing out of peaks and troughs of instability in the
flows and loads reaching the WTW could provide much more of a stable operating
environment.

There are regulatory drivers (at least in England and Wales) that will push the
industry into an environment that is much more rigid regarding the management of
flows and, like the EDM programme in the wastewater network, will ensure that all
flows that can possibly be treated, are.

The industry is moving towards a factory approach that was proposed by the
Dutch Foundation for Applied Water Research (STOWA) in 2010 when they
described the WTW of 2030 as water, energy and nutrient factories [20]. Their
fundamental point is that the WTW adopts the factory approach, and, as with any
factory, measurement and control is an essential part of managing the “factory”

(system) as a whole.

3.1 Philosophy of Operation

What is the Aim of the WwTW?
The very fundamental aim is to treat wastewater to a standard where it does no harm
to the environment that it is discharged to. This aim is incomplete though, as from an
environmental perspective the aim can be modified to include an element of holistic
environmental cost, insofar as doing no harm to the much wider environment will
include an element of efficiency. It is relatively easy to treat wastewater to a standard
so that virtually pure water leaves the treatment plant; however, the prohibitive
energy and chemical costs to do this outweigh the overall environmental benefit.

This is where the aspect of the resource factory comes into play. Which products
are available from a WwTW and how do we use the factory approach to produce
them?

The products that can be produced from a WwTW are:

1. Water of varying qualities
2. Biosolids (rich in nutrients and used as a soil conditioner)
3. Phosphorus (as a fertiliser additive)
4. Energy and Biofuels (either directly as electricity or as a liquid gas)
5. Low-grade heating water
6. Cooling water (for use in data centres or other applications)
7. Plastics

126 O. Grievson



Of these, at least the first five are actually already being used at the current time
and are no longer in the research and development phase for potential use in WwTW
of the future so, as we can see, the STOWA approach has become somewhat of a
reality.

As well as producing resources, there is the drive towards energy and process
efficiency, and there are a number of different tools enabling this, including instru-
mentation based control systems, as well as multivariate process control [21]. How-
ever, the overall most important thing, from an instrumentation and control point of
view within the WTW, is having the information to hand to make informed opera-
tional decisions.

3.2 Measuring and Controlling the Wastewater Treatment
Process

The WwTW can be split up into a number of different processes which are inde-
pendent of the size of the works. However, in the main, the measurement and control
processes are restricted to the medium and large treatment works, as the value of
smart systems only becomes cost-efficient on the systems where economies of scale
exist. This will govern not only where smart systems are installed on the WwTW but,
in reality, the entire wastewater treatment system. This has been one of the stumbling
blocks for the adoption of smart water systems across the wastewater industry.

Splitting the wastewater treatment system across its component parts, we can see
the drivers of instrumentation and control systems across the works.

3.2.1 Measuring and Controlling Preliminary and Primary Treatment
Processes

The purpose of the preliminary and primary treatment processes are threefold:

• Remove bulk debris from the incoming waste stream through the screening
process.

• Remove grit.
• Manage flows by balancing and/or storm separation.

Looking at each of these processes in turn, there are potentials for increased
efficiency of operation in some areas only.

Looking at the screening process, it is only there to remove solids, and the simple
control system is designed to clean the screens when they become blocked
(or blinded). The traditional measurement and control system look at differential
levels up, and downstream of the screen, and when the differential increases to a
preconfigured level, it initiates the screen cleaning process.
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Grit removal typically does not have any measurement and control system and so
from this aspect can be ignored.

The flow control and storm system within preliminary treatment is an area that
has a vast potential for intelligence in operation. It is going to be an important area of
development in England and Wales between 2020 and 2025 [22] and is all about
controlling the flow to full treatment (FFT). There is a legal duty under a treatment
work’s environmental permit for it to treat a certain flow before excess flows pass to
storm storage tanks. If excess flows are seen at the works for greater than 2 h, they
pass directly into the environment. Across the various treatment works in the
industry, for various reasons, there are problems with this concept. FFT flow control
is normally achieved by using either a static weir and flow control device (such as a
flume or hydrobrake) or a modulating device complete with flow measurement (such
as a modulating penstock). The modulating methodology can, on occasion, have
problems due to poor engineering practices.

As a result of this, there are moves within the English and Welsh wastewater
industry to install flow measurement and sensing on storm splits as well as on the
effluent point of the WwTW storm storage tanks. The retrofitting of flow to full
treatment flow measurement for flow control is disproportionately expensive. How-
ever, it does have further benefits for advanced control of the wastewater treatment
system.

Measurement of the FFT at a treatment works allows for the performance of the
wastewater collection system along with the potential for control of any terminal
pumping station. At the most basic, any large changes in the amount of flow over a
defined period of time can indicate whether there is a blockage within the wastewater
system. At its simplest, if a WTW doesn’t see flow over a period of time, then this is
a good indication that a blockage within the network is causing the flow that is
normally seen to escape elsewhere (normally through a CSO). It will vary from
system to system depending upon how many pumped flows and how many gravity
flows feed the treatment works, but a simple algorithm of a defined low flow rate
over a defined time will allow for anomaly detection.

In a more complicated system, there is potential to automate the pumped feeds
into the treatment works by using the FFT flow meter and automated control on the
terminal pumping stations. The latter is achieved using a priority based-system
related to the capacity within each wet well, and possibly artificial intelligence to
manage the contents of the wet wells, to smooth flows entering the treatment works.
This looks at the capacity of the network and the performance of the inlet works to
see what flows (and loads) can be received at the WTW whilst also minimising the
risk to both the environment and the customer. The current growing “big data”

context provides abundant opportunities for the application of artificial intelligence
to such problems as optimisation of sewerage networks’ operation, predicting urban
flooding [23], CSO monitoring and analysis [24, 25] and automatic control of sewer
pumping stations utilising fuzzy logic [26]. Latest approaches have proposed more
distributed real-time control of urban drainage systems to locally manage flooding
and overflow [27, 28]. Artificial neural networks (ANNs) have become an increas-
ingly popular data-driven approach for water industry applications. ANNs have been
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widely applied in different fields of engineering and are a modelling approach based
on how biological neural systems are believed to work. Li et al. review the applica-
bility of ANNs to urban hydraulics and hydrology. An area that could be usefully
explored includes using ANN models to predict flows at treatment works.

With the advent of event duration monitors and performance targets on up-time
on the weirs to and from storm tanks, there is a push within the industry to manage
flows at the front end of the treatment works. This would both protect and reduce risk
to the environment (in using storm tank capacity) a lot more stringently.

The system as a whole can be seen in Fig. 3. It is slightly overcomplicated with
the addition of flow monitoring on the feed pumping stations and on the storm tank
return and yet could be considered slightly simplified as large works could poten-
tially have many more than just two feed pumping stations. However, the principal is
there insofar as there is no control over the gravity feed to the works, but there is
control over the two feed pumping stations that could hold back feed flows.
However, this would be dependent upon the capacity in the network upstream of
the pumping stations, and in the pumping station wet wells themselves.

This is the point where the inlet works of the WTW becomes an integral part of
the wastewater collection network and vice versa.

After flows pass forward to treatment, the first stage that they will typically pass
through is primary settlement. Although not always present as a treatment stage on
the larger works, it is normal practice. This is because the separation of gross solids
in the sewage is a valuable energy source that, if not removed, is simply load, and
therefore an energy loss, to be treated in the next stage of the process. As it is a
simple physical settlement stage, there is very little to control, but measurement of
the wastage of primary solids is something that should be considered in an energy/
resource factory, as it is a major source of energy. Primary settlement tanks can be
used as a thickening stage using type 3 (hindered) settlement and type 4 (compres-
sion) settlement. In this way there is the potential to use a combination of both sludge
blanket level and flow/solids measurement on the primary de-sludge line from the
settlement stage to manage the sludge inventory. In reality, flows and loads coming
into a sewage treatment works are ultimately predictable, and with predictability the
primary sludge inventory can be managed with the right measurement. This also
needs to feed forward to sites with anaerobic sludge digestion to create an almost on
demand availability of sludge allowing for the correct blend of import and secondary
sludges to maximise the energy output of the wastewater treatment facility.

3.2.2 Measuring and Controlling Secondary Treatment

The biological (or secondary) stage of wastewater treatment very much depends
upon the size and the type of the plant and what the treatment goals are. Biological
filters are still the predominant type of wastewater treatment, especially on small and
medium treatment works, and, apart from simple recirculation flow control to keep
biological filters wet, there is very little measurement and control needed in this type
of secondary treatment. As the process is so simple, there is also very little that can
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be done to make efficiency savings and very few “resources” that can be recovered
from biological filter treatment streams.

With the development of tighter standards, and certainly on large facilities,
activated sludge plants are much more common as a biological treatment stage
along with numerous variants that are designed for nutrient control (Biological
Nutrient Removal plants and Enhanced Biological Phosphorus Removal Plants).
The overall measurement and control aim is to maintain the biological mass at the
right levels to achieve the desired treatment goals.

Activated sludge plants tend to be very energy heavy as, the tighter the consent,
the more intensive the treatment process is. This is especially true of aeration control.
This is also applicable to managing the biological balance within the plant, through
the control and return of the bacterial mass, and waste of biological solids.

The simplest of these control systems is direct control of the air within the
activated sludge plant, by using the measurement of dissolved oxygen and ramping
blowers up and down in line with the demand for air. This is not a very common
technique in practice, as the variation in oxygen being measured will cause constant
ramping of the blower system. Instead, a much more common approach in a simple
aeration control system is to pressurise an aeration header and maintain the pressure
using blower ramping and dissolved oxygen measurement to control the position of
modulating valves. How these valves are controlled is where the efficiencies in
aeration control lie, including feedback control in-line with measured concentrations
of target parameters, or feed forward control using Activated Sludge Models.
Controlling the whole balance of the system, including the sludge solids, is actually
the way to manage the efficiency of the whole activated sludge system for maximum
benefit. Moving to the resource factory approach, this can be tailored depending
upon the treatment outcomes. Figure 4 shows a conventional activated sludge plant
system including its control systems.

At the most basic, the dissolved oxygen concentration is used to adjust the
aeration lane valves (open or closed). The level of the dissolved oxygen measured
in the lane creates the pressure to drop in the aeration manifold when the valve is
opened, and this pressure drop starts the aeration blowers to maintain a set point
pressure. In the slightly more advanced systems, there is a feedback loop from the
ammonia concentration which sets a dynamic oxygen set point which the plant
attempts to maintain.

Of course, on top of this is the control of the actual biomass within the activated
sludge system. The importance of this is reflected in the oxygen required to treat the
load to the biological process.

Oxygen requirements in an activated sludge plant can be split into four main
areas:

• Oxygen required to treat the carbonaceous load (BOD)
• Oxygen required to treat the nitrogenous load (ammonia)
• Oxygen required by the biomass to breathe
• A credit caused by the conversion of nitrate to nitrogen gas in the anoxic zone
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All of this is added together (or taken away for the credit) and is used to calculate
the aeration system requirements and normally includes a peaking factor to allow for
peaks in load of up to 40%. This all creates inefficiencies in the activated sludge
plant design.

There are four areas where advanced activated sludge plant control can create
efficiencies in operation:

• The first, and most obvious, is to limit the biomass oxygen demand by limiting
the physical quantity of biomass required to successfully treat the wastewater.

• The second is to control the oxygen required to treat the nitrogenous load to just
more than is needed (to allow for a small safety factor) by using feedback
ammonia control, feed forward ammonia control or potentially a combination
of both.

• To control and stabilise the flows (and load) coming through the works and,
where possible, eliminate the peaking factor as much as possible.

• Maximise the denitrification credit by increasing the size of the anoxic zone by
utilising the concept of swing zones, thereby allowing a greater size anoxic zone
when the temperature allows.

There are numerous ways to control the activated sludge plant and its many
variants to maximise the treatment objectives. These include using many more
sensors than the basic methods including:

• Respirometry that will look at the bacterial health and calculate the specific
oxygen utilisation rate

• Sludge Volume Index that will look at speed of the settleability of the sewage
sludge and waste sludge, based upon the capacity of the final settlement tanks to
hold the mass of sludge

• Nitrous oxide sensors that will look at the performance of the denitrification
process, the stress levels of the bacterial population and control the efficiency of
the wastewater treatment process

Practically, there are many types of secondary treatment processes, and the aim of
the process needs to be understood thoroughly. Is it a case of removing all pollutants
within the biological treatment stage? Or is it using the process for resource
recovery? This is an area that the industry is heading towards, potentially setting
things up for a tertiary stage where products are removed. This is all going to affect
the monitoring and control strategy of the secondary (and potentially tertiary)
treatment process.

3.2.3 Measuring and Controlling Sludge and Resource Recovery
Processes

It is when the wastewater treatment works is a sludge treatment centre that the real
value of wastewater comes into force, and this is an area of the business that should
resemble “the factory approach” much more than is currently the case. There are,
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however, complications in the measurement techniques that make this a difficult
proposition, especially as the sludge from the primary and secondary treatment
processes moves from a Newtonian to a non-Newtonian fluid (usually around the
5–8% dry solids mark).

The processes within sludge treatment often see sludges that start at 2–3% dry
solids and are thickened to around 8% dry solids. If this is on a sludge treatment
centre, it is more about processing the sludges for use in subsequent treatment steps,
but often this is done on satellite sites to ensure that as small amount of water as
possible is transported via tankers.

Once thickened sludges are produced it becomes very difficult, although not
impossible, to measure what is actually happening. This is especially the case
when sludges are de-watered in a centrifuge process up to dry solids between
23–28%. At this level they resemble a powder. This depends upon what is being
done to the sludges in terms of treatment steps.

The most common treatment step in the UK is mesophilic anaerobic digestion
(MAD) although quite often nowadays there is an Advanced Thermal Digestion step
before MAD to speed up the throughput of the process [29]. In MAD, sludge is kept
in an anaerobic environment normally for upwards of 12 days at 37 � 2�C. This
converts a proportion of the sewage sludge to methane gas as it goes through the
anaerobic digestion process. The temperature of the process is very critical, as is the
mixing and the complete absence of oxygen. Thus, temperature monitoring is an
absolutely critical part of the process and is normally carried out at three points
within the digester. However, this is not the only critical factor as the heating loops
for the digester heating have to be maintained and monitored precisely to ensure the
maximum output of the gas quality. Measurement of the gas quality is becoming
more and more common to measure the performance of the overall system.

What is essential for the digestion process is consistency and, in an ideal world, if
the same volume of sludge is fed to the digesters consistently throughout the day ad
infinitum the process would run without error. However, this consistency is not
typical due to problems within treatment processes and general operational chal-
lenges that are the normal daily routine within the water industry. Thus checking the
anaerobic environment becomes a priority. For example, when a digester is overfed,
the amount of acids that are produced as part of the digestion process can build, and a
digester will turn acidic. It is in these circumstances where monitoring the pH as well
as the output gas quality can become important.

Taking it back a stage, the whole process can be controlled by a greater level of
monitoring and control at the sludge thickening (or dewatering stage if using thermal
hydrolysis), to get a consistent output in the sludge quality feeding the digesters and
basically processing on an on-demand basis. This level of consistency is where an
automated measurement and control system comes into its own. Increasingly, the
industry is seeing the use of advanced process control on sludge thickening and
dewatering systems using sludge flow measurement into the thickening stage, as
well as the dry solids content. This approach allows a consistency of application of
the polymers used in the treatment process. In advanced systems, the flocculation
stage, where the polymer and sludge are mixed, is optimised. Also, changing the
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angle of the unit to speed up or slow down the process enables control of the
thickening and dewatering stages in drum thickening and centrifugation, allowing
for thinner or thicker product which is then transferred to the digestion stage.

If consistency is achieved, then it spreads throughout the entire process, achieving
the ultimate aim. However, in reality, consistency is not usually achieved throughout
the whole process, and the challenge is to bring balance from imbalance. This is
where the measurement and control systems come into play.

3.3 Holistic Control: Model-Based and Multivariate Process
Control

The WTW as a whole can be controlled manually by analysing and responding to
the data produced by the instrumentation, but this is a labour-intensive process
which requires continuous adjustments. On the larger scale treatment works, there
is normally some sort of automation within the process to realise process-based
efficiencies over standard manual operation. This can be as simple as a single
instrument-based control loop, or as complicated as a multivariate process control
system.

Within the past 5–8 years, the principles of individual process control on the
activated sludge plant have been gathered into integrated advanced process control
systems in the UK by two commercial organizations and one or two of the water
utilities. The water companies themselves have tried to do this with PID loop
controls and, in some cases with cascade loop control systems, some of which
have had some success in Europe.

Hach Lange developed the Water Treatment Optimization system (WTOS),
which is very much an advanced process control system based upon instrumentation.
The WTOS system utilized Hach Lange instrumentation and a process model based
upon the ASM1 activated sludge model [21].

One of the first full-scale installations controlled with the WTOS system was a
250,000 population equivalent four-stage Bardenpho plant with methanol addition
in the second anoxic zone. The system and controller that was developed for this
treatment plant looked to monitor and automate the whole process, including the
nitrification and methanol dosing. This first installation conducted a trial over a
10-week period and managed to achieve a 20% reduction in the amount of aeration,
control of the amount of ammonia that was discharged, and a 50% reduction in the
amount of methanol that was consumed.

Since its first implementation in 2008, this technology has developed even further
with other control modules including a nitrification module (which includes sludge
age control) specifically designed for the activated sludge plant, as well as modules
that are designed for other plant processes.

The second approach to advanced process control has again been based on
model-based controllers but is less reliant on instrumentation and more reliant on
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the intelligence of the system as a whole; any failings in the implementation of APC
have been due to poor data quality from the instruments. This approach put more
intelligence into the control system to identify when an instrument becomes
unreliable and, for the system as a whole, to replace the unreliable data with an
inferred value based upon the readings being received from other instruments within
the system.

For example, the control model “knows” what each DO sensor should measure at
any given time, given the influent flow, blower load, valve positions, manifold
pressures and treated water quality. If any probes report values that are significantly
different from those that are expected, an alarm is raised, and the inferred value is
used to exercise control of the process. Optimized control can be maintained even
when real-time measurements become unreliable.

The multivariate process approach has advantages of being a system based upon
the control element and is much more widespread within the plant, taking into
account the whole treatment facility rather than just the activated sludge plant on
its own. Case studies of this approach in three UK water and sewage plants realized
savings between 20 and 35% of the aeration costs whilst also reducing the risk of
compliance failure as the treatment plant operates more efficiently under automated
control [30].

All of these systems are designed on the basis of the International Water
Association Activated Sludge Models (ASM), and it is these models that are
providing the fundamental basis for the control systems of the secondary treatment
plant stages. The challenge to the industry is to use these models at their core and
stretch them further into not only the treatment works level but across the whole
wastewater system. Although there are individual models for aspects of control
within the wastewater system, it is likely that the real complication in controlling
the entire system will be melding together the different models that are available.
These include hydraulic collection network models, multivariate process control
models for individual aspects of the treatment system and SCADA and control
systems. This does not take into account sporadic inputs into the wastewater system
such as from customers and of course weather.

4 A Smarter Wastewater Industry

Ubiquitous sensing will create many opportunities and threats for urban water
management and calls for a digital transformation [31]. Increasing amounts of data
is only of real business value if this valuable resource is ultimately used to inform
and support decision-making, i.e. data to information to insight to action. Smart
water network technologies have the potential to deliver an improved service to
customers and cost-effective performance improvements for the water industry. On
the wastewater side of the water industry, the “smart water” approach that we have
seen applied to applications in potable water (such as water leakage) is much more
difficult. The first barrier is the value of wastewater, as it is very much seen as
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something to be treated as efficiently as possible but actually something with a
negative value as it is considered as a waste. In the past few years, due to a growing
awareness of environmental issues and a sustainable circular economy, this has very
much changed towards elements of wastewater being considered a resource. An
example of this is energy and biosolids from wastewater sludges, but there are many
more resources to be gained including water, phosphorous and many other nutrients
within the matrix being reused as resources. It is a balance however because, if
phosphorus is stripped from the biosolids, then it is not available in the biosolid
when it is applied to agricultural land. So, when thinking of wastewater and biosolids
as a resource, the industry has to consider what the market is, and what product is
being made available for that market. As the WwTW becomes a production factory,
the processes within that factory must be measured and controlled to ensure effi-
ciency of production and the quality of the products.

There are also efficiencies to be gained in how production processes are con-
trolled. The value of this is not to think about the WwTW and the wastewater
collection network as separate entities, as in the past, but to think of it as part of
one dynamic system. Controlling the flow of wastewater through the collection
network and funnelling it towards the WwTW not only has energy benefits by
smoothing at the flow profile but has the potential benefit of protecting both the
customer and the environment.

By measuring the state of the system and utilising operational models, there are
large benefits to be gained. The minimum benefit comes from simple operational
visualisation that allows for potential pollution detection, and the maximum benefits
are realised by using advanced control of the entire wastewater system. By utilising
automated control of the system and operational models within the wider wastewater
system, efficiencies in energy consumption and customer and environmental
protection can be achieved. These include balancing flows through the network,
monitoring areas that are at risk of flooding, preventing sewer overflows where
possible and allowing the maximum flow through the treatment system. Some
aspects of this smarter approach are currently implemented, but there is not yet
one system consistently using all these tools at this time.
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Abstract The current chapter demonstrates utilization of radial basis function
(RBF) as a tool for detection and classification of abnormal events in water
quality. The methodology is based on calibration of a RBF based on historical
true events classified by human experts. The aim of the process is selection of
parameters that ensure zero false negative events. The chapter describes the main
method of using RBF and then compares four different kernel functions which
are used for implementing the RBF. The case study part of the chapter illustrates
actual analysis of real-world data as well as an illustrative example. The
chapter concludes with some practical advice on how kernel functions should be
selected for this task.
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1 Introduction: The Problem of Water Quality Events
Classification

According to ISO245221 (ISO standard for water quality events detection in drink-
ing water and wastewater systems), a water quality event (henceforth WQE) is
defined as a situation in which “measurements of water quality are not according
to what they are expected to be.” This does not necessarily mean that these
measurements violate regulation rules.

Online monitoring uses several common measurements of water qualities in order
to ensure the safety of using it for drinking and sanitation. The most common
combination is free chlorine, turbidity, and pH as can be seen in several common
systems (http://ec.europa.eu/environment/water/water-drink/index_en.html). How-
ever, several other parameters were listed as can be seen in (https://www.epa.gov/
wqs-tech/water-quality-standards-handbook).

Given that, in some countries, the regulatory limit for measurement of turbidity is
1.0 NTU2, any water with measurement above this value is not recommended for
drinking. However, in a site in which the average measurement of turbidity is around
0.1 NTU with standard deviation of 0.05 NTU, a measurement of turbidity of 0.75
NTU may be considered abnormal and should be investigated even if it does not
violate regulation limits. If it is known that somewhere in the upstream of the
sampling point, a pipe repair or maintenance work was performed prior to the
event in which such turbidity was measured, this may explain this result and may
cause this event to be “expected.” The problem of identifying WQE becomes more
complicated when measurements include several parameters. In this case addition-
ally to examine each measurement separately, a multiparameter approach should be
used. When using such measurements, it is advisable to use the likelihood of the
combination additionally to values of the individual sensors. See Amit and Brill [1]
and Mounce et al. [2].

Several general methods have been suggested in the past for identifying and
classifying multiparameter abnormal events in general cases. These general methods
include supervised methods such as regression or regression trees and methods that
make use of unsupervised learning such as clustering.

Examples for identifying abnormalities using distance-based or density-based
method have been demonstrated in the past in many areas. Knorr and Ng [3]
demonstrated distance-based methods. Further improvements were demonstrated
by Knorr and Ng [4], for distance-based clustering such as the kMean algorithm.
More recent work in this field is presented in Angiulli and Pizzuti [5] and in
Ramaswamy et al. [6]. The methods proposed in these works are also based on the
kNN algorithm (where kNN stands for multi-k-nearest neighbors). Bay and

1ISO24522 is under publication procedures and will be available during winter 2019.
2NTU are the standard units for measuring turbidity.
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Schwabacher [7] addressed pruning for distance-based outlier algorithms applied for
large real-world data sets introduced.

Another clustering philosophy is based on density of points. Examples of such a
philosophy are given by Breunig et al. [8, 9], in relation to relative density. Jin et al.
[10] showed how some of the calculations of the density function can be skipped or
estimated based on distribution type. Tang et al. [11] further improved clustering by
adding the idea of a connectivity-based outlier factor, which refers to the number of
connections between points.

With regard to WQE specifically, a major work has been done under the EPA
(US Environment Protection Agency) framework and including the development of the
Canary software. Canary is a free software tool developed by the EPA which aims to
detect abnormality in water network [12, 13]. An extensive comparison work (https://
www.epa.gov/sites/production/files/2015-07/documents/water_quality_event_detec
tion_system_challenge_methodology_and_findings.pdf) done by the EPA compared
the Canary algorithm to other tools. It was reported based on comparison between
actual and expected value of water quality measurements that this algorithm does not
have general superiority over other machine learning algorithms. That is, using linear
regression to predict water quality does not do better than other methods. In this specific
report, the Canary was ranked third in many tests based on the amount of false alarm
reported. Another conclusion which was pointed by this report is the fact that the
Canary has a narrow time window from which its algorithm learns and hence can’t
provide conclusions based on large data set. Abnormality detection has two main
methods as was detailed by Clark and Hakim [14]: supervised and unsupervised.
Examples for WQE detection have also been provided by Skadsen [15], Story et al.
[16], Yang et al. [17], Chang et al. [18], and Helbling and VanBriesen [19]. A set of
more commercial reports with many useful pieces of information can be found at the
following EPA website: http://www.epa.gov/nhsrc/pubs.html.

The current chapter examines the efficiency of radial basis function (RBF) as an
identification and classification tool for WQE. RBF is known in the literature as a
tool for abnormality detection in other areas. Examples are given by Mellisa et al.
[20] for mammograms classification; Padmapriya et al. [21] for brain tumor detec-
tion; Rajab and Salleh [22] for classification of diabetes; Mansourkhaki et al. [23] for
traffic prediction; and Chun-Cheng Lin and Weichih Hu [24] for detection of
abnormal intra-QRS pulses.

The current chapter demonstrates the implementation of RBF in the WQE
detection domain. The structure of the chapter is as follows: the second section of
the chapter gives a description of RBF and RBF networks. The third section gives a
description of parameter values selection. Section 4 describes a lab-based example.
Section 5 is the analysis of the data set with the traditional form of RBF. Section 6
shows a similar analysis with several other forms of RBF kernel function. Section 7
concludes the chapter.
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2 RBF: Structure and Basic Description

A simple RBF can be mathematically described by Eq. (1). The function refers to a
single dimension function which has two parameters. The first is the distance of the
value of x from a constant value depicted by μ. And the other one is a scale factor
depicted by γ. Figure 1 refers to a specific function with value of μ¼ 5 and the value
of γ ¼ 1. The figure shows the resulting value of h(x) over a range of x from 0 to 10.

Equation 1: Basic RBF

h xð Þ ¼ e�γ x�μð Þ2 ð1Þ

The value of μ sets the location of the h() peak on the horizontal axis. The value of
γ sets the height of this peak.

The last parameter has an additional influence as can be seen in Fig. 2. As γ
absolute value becomes smaller, the function becomes wider and vice versa.

Define parameter μ as the “centroid.” In case of function (1), it is a single point on
a one-dimensional axis. However, in case of a multidimensional problem, μ becomes
a vector. It describes a set of values (one for each dimension), i.e., it is a point in a
multidimensional space.

Figure 3 illustrates the calculation of RBF for a single point (the red point) in a
two-dimensional space with three centroids (i.e., μ ¼ 5).

As it can be seen, the red point has three distances on the horizontal axis (axis X1)
one to each centroid. These are numbered as 1, 2, and 3 in Fig. 3. There are three
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Fig. 1 Chart of function (1) in the range 0 to 10 with γ ¼ 1 and μ ¼ 5
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additional distances on the vertical axis (axis X2). These are numbered 4, 5, and 6 in
Fig. 3. Figure 4 demonstrates this calculation in a matrix form. As it can be seen,
each distance numbered in Fig. 3 populates a cell in the matrix with form as shown in
Fig. 4.

In order to complete the implementation of RBF for events classification, two
components are needed. First, each axis should be given a different weight. This
weight reflects the importance of this dimension/measurement over the final value of
the RBF. A second component is a classification policy. The classification policy
defines how the result of the weighted summation of all distances over all dimen-
sions is translated into one of two values about each point in the space. These values
are true or false. This value specifies that a single point in the multidimensional
space, when investigated and given its neighboring centroids, should be considered
as a true WQE or false WQE.

Fig. 3 Illustration of RBF in two dimensions

Fig. 4 RBF in a
matrix form
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It should be noted that some systems give also probability for the classification.
However, this probability is based on distance and is affected by the variables
normalization and thus may be biased. Hence, the current chapter displays a method
which deals only with the binary classification, assuming that a true WQE will
require additional human investigation.

It should be noted that the classification process must take into consideration the
number of centroids, for example, by normalizing the summation of the distance by
the number of centroids (see step 2 in what follows). Examples for the classification
process as used in this paper include:

• Step1: Calculate the RBF for a given point.
• Step 2: Divide the result of step 1 by the number of centroids used for this

calculation.
• Step 3: If the result of step 2 is above a threshold (henceforth high RBF level

(HRL)), classify as true and classify others as false.

The numerical example given in the data set analysis section of this chapter will
illustrate this process.

Equation (2) gives an implicit form of this function. The term DET refers to
detection process as described above.

Equation 2: RBF with classification

h xð Þ ¼ Det
XN

m¼1

wme �γ xm�μm½ �2ð Þ
( )

ð2Þ

Once again, using a matrix the general notation yields Eq. 3.
Equation 3: General form of a RBF where the squared matrix is denoted by Φ

e�γ x1�μ1½ �2 e�γ x1�μ2½ �2 . . . e�γ x1�μN½ �2

e�γ x2�μ1½ �2 e�γ x2�μ2½ �2 . . . e�γ x2�μN½ �2

⋮ ⋮ . . . ⋮
e�γ xK�μ1½ �2 e�γ xK�μ2½ �2 . . . e�γ xK�μN½ �2

2
66664

3
77775

w1

w2

⋮
wN

2
6664

3
7775 ð3Þ

The equation set above can be written in short as Φw ¼ y where Φ is the term in
the first squared parenthesis and w is the correspondent weights vector.

3 RBF Parameters Selection

As it was set out earlier, the values of W(s) and HRL should be defined or initialized
in some manner. We turn now into the last stage of the methodology. This is the
stage that involves setting the values of these parameters. Let us assume that the set
of known centroids (which will be called the training set) is based on known and
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classified events. A human expert has manually classified each one of these events as
true. Additionally, we have a set of other K points with the same structure. This set
will be named as the calibration set. For this set we have for each point a human-
defined classification. However, this set (unlike the training set) includes both points
that were classified as true and points that were classified as false. For each point of
the calibration set (called a selected point), one can calculate using the RBF
algorithm, the value of h() based on the set of neighboring points from the training
set. As it was explained previously, points which are located near the selected point
will have high influence on the value of h(), while points located far from the
selected point will have low influence on the h() value of the selected point, or
even zero influence. Based on the calculated result of the h() and the classification
policy of HRL, the selected point will be classified by the algorithm as true or false.
This means that each point in the test set will have two classifications (reference
human classification and algorithmic). The human classification can also be called
the actual (“correct”) classification since the human expert bases it on actual
observation of reality. And the model classification is the classification obtained
by the algorithm for each point in the test set.

After this process is repeated for all points from the calibration set, the results can
be assembled as a confusion matrix as shown in Table 1. Such a matrix has been
introduced, for example, by Cohen’s kappa (1960).

• True Positive – a point that was classified as true by both the algorithm and the
human expert

• False Positive – a point that was classified as true by the algorithm and as false by
the human expert

• False Negative – a point that was classified as false by the algorithm and as true
by the human expert

• True Negative – a point that was classified as false by both the algorithm and the
human expert

Each of the TP, FP, FN, and TN values is a count of the number of events satisfied
in the correlated condition as shown in Table 1 (and in the four points above). Using
these numbers, it is also possible to calculate the sensitivity and specificity of the
results. Sensitivity (also called the TP rate, the recall, or the probability of detection)
measures the proportion of actual positives that are correctly identified out of total
number of true cases – i.e., TP/(TP + FN). Specificity (also called the TN rate)
measures the proportion of actual negatives that are correctly identified out of the
total number of false cases – i.e., TN/(TN + FP). In some cases where the cost of FP
or the cost of FN is extremely high, these ratios are very important.

Table 1 Results of detection

Model classification

Actual classification True False

True True positive (TP) False negative (FN)

False False positive (FP) True negative (TN)
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A special note should be made about how the counting of events is performed.
Since many monitoring systems produce a reading every minute, if each reading is
counted separately, a biased result would be achieved due to the existence of long
events and short events. For example, if (as an extreme case) a situation with a wrong
measurement (due to instrument dropouts or calibration drift, etc.) produces a FP
condition which lasts for several days (until the measuring device is fixed), a large
amount of records classified as FP will be counted and will adversely affect the result
of the model accuracy. In order to avoid such a situation, counting of events should
be referenced to events and not to single records. Hence, an event needs to be
defined.

An event is a situation in which the value of RBF crossed the HRL to the high
side for a substantial amount of time (this amount of time should be set by the
users) after being located below the HRL for a substantial amount of time (also
this amount of time should be set by the user).

The above definitions imply that two time lags should be defined. The first one is
how long the algorithm should wait, when the process crosses the HRL to the upper
side, to declare an event. This one will be called a Delay On time. The second one is
how long the algorithm should wait when a process crosses the HRL to the lower
side before an end of event should be declared. This one will be called a Delay Off
time. Based on the two delay time definitions, the algorithm classification method
should be updated with the following additional rules:

Rule 1 In case of a long period of no event, the process crosses the HRL to the upper
side and then goes back to the lower side of the HRL, and a TN event will be
declared. See Fig. 5 as an example of Delay On.

Figure 5 is a representation of a TN since in this case the system (the algorithm)
did not generate an alarm even if a violation of the HRL occurred. This is due to the
Delay On mechanism.

Rule 2 In the case that, after an event has started, the process oscillates above and
below the HRL without achieving either the Delay On or Delay Off amount of time,
the counting of the events will not be incremented. See Fig. 6 for an example.

The values of the Delay On time and the Delay Off time should also be added to
the process of algorithm parameter selection. Thus, the target of the algorithm tuning
is a selection of the values of W(s), HRL, Delay On, and Delay Off in order to
optimize the results described in Table 1. Once again it should be noted that
optimizing the values in Table 1 means optimizing the Cohen’s kappa, the sensitivity
and specificity.
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For the purpose of this chapter, it is defined that the optimal parameter selection is
such that all true events are detected with zero FN events and minimal FP events.
This policy is aligned with the idea that a contamination event may be hazardous for
humans. Hence, the target is to avoid FN events completely.

Fig. 5 Example of a true negative

Fig. 6 RBF fluctuations as a single event
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4 An Illustrative Case Study

This section describes a numerical example, which implements the above frame-
work, and utilizes laboratory rig generated results. The purpose of this example is to
demonstrate the implementation of the algorithm to a level in which the reader can
follow the calculation results. The data set in this example contains 1-day samples
with several artificial events than have been injected into the data in order to illustrate
the detection of these events using the RBF.

Figure 7 shows a 1-day chart of water quality with three measurements: turbidity,
free chlorine, and pH.

Data is recorded with 5-min intervals between records. This gives 24�12 ¼ 288
records per day. The pH measurement is displayed with blue color. Its actual range
varies between 7.0 and 7.5 with two local peaks at a level near 8.0 around record
190 and 270. The free chlorine and turbidity are displayed with green and red colors,
respectively. Turbidity normal level is around 0.37, and free chlorine normal level
oscillates around 0.4 with two additional noise effects. First, during midday (around
record number 140) when the temperature is high, the level of free chlorine is lower
due to extensive evaporation. Second, the level of free chlorine is affected by the
dosing system which works in “open loop control.” These two effects create the
smooth U shape with hourly fluctuation of the free chlorine curve.

Five abnormal events can be noticed in Fig. 7. They are numbered 1–5. Events
1, 2, 3, and 5 were classified as false. Only event 4 was classified as true by an expert.
The task now is to calibrate parameter values of the RBF algorithm in order to
achieve the same classification. The steps for the manual calculation to obtain the
optimal values are explained below.

The five events shown in Fig. 7 form the calibration set. The training set for this
problem includes two points. These points are listed in Table 2.

Given the values of the centroids in Table 2 for each point in Fig. 7, a value of
RBF was calculated based on the inner part of Eq. 2. For example, the value for the
first point of chart 7 has the values of pH ¼ 7.077, free Cl ¼ 0.407, and turbid-
ity ¼ 0.322. Hence, its RBF value is calculated using:

exp � 7:077�7:5ð Þ2 þ exp � 4:07�0:18ð Þ2 þ exp � 0:322�0:70ð Þ2 þ exp � 7:077�7:2ð Þ2

þ exp � 4:07�0:28ð Þ2 þ exp � 0:322�0:55ð Þ2

¼ 5:571

Performing the calculation for each of the points in Fig. 7 yields Fig. 8, which
shows the RBF curve for the same group of records.

Using Radial Basis Function for Water Quality Events Detection 151



11
.0

00

pH
T

u,
 C

L

10
.0

00

9.
00

0

8.
00

0

7.
00

0
F

re
eC

I

T
ur

bi
di

ty

pH
6.

00
0

5.
00

0

4.
00

0

3.
00

0

2.
00

0

1.
80

0

1.
60

0

1.
40

0

1.
20

0

1.
00

0

0.
80

0

0.
60

0

0.
40

0

0.
20

0

0.
00

0

X
_A

xi
s 

– 
R

ec
or

ds
 n

um
be

r

Y_Axis: pH (Stand Unit, CL mg/ml, Tu NTU

1
9

17
25
33
41
49
57
65
73
81
89
97

105
113
121
129
137
145
153
161
169
177
185
193
201
209
217
225
233
241
249
259
265
273
281

5
3 1

2

4

F
ig

.7
O

ne
da

y
of

qu
al

ity
sa

m
pl

es

152 E. Brill



As it can be seen from Fig. 8, the most common values of RBF are between 5.7
and 5.8. Since the lower is the value of the RBF, the further it is from centroids, and
since centroids represent in our case true events, values below 5.7 have no interest.
Figure 8 has three abnormal spikes labelled as A, B, and C. These spikes correspond
to points 1, 2, and 4 in Fig. 4. Setting the HRL to a value between 5.87 and 5.90 and
setting the Delay On time to a value of more than 3 min will enable the algorithm to
label point C as true and points A and B as false. This will make point C in Fig. 8
(which is point 4 in Fig. 7) a TP event and point B in Fig. 7 (which is point 2 in
Fig. 7) and point A in Fig. 8 (which is point 1 in Fig. 7) TN events. This setting will
achieve the target of detecting all TP events (according to the manual classification)
with no FN events. This section shows a very simplified example for RBF with few
injected events. In reality, however, training and calibration sets may contain a large
amount of records with many events. The number of dimensions may be 4, 5, or
6 and the length of an event may very between a few minutes to a few hours. The
next section shows the results of the implementation of the RBF algorithm to real-
world data.

The RBF algorithm has additional parameters such as variables weight (the
w values) and function height normalizer (γ). These parameters may give an addi-
tional degree of freedom for the calibration process. However, for simplicity these
parameters have been kept fixed in the current analysis with a value of 1.

5 Real-World Data Analysis

The above algorithm has been implemented on a “real-world” data set taken from the
monitoring station located in a large city with more than half a million residences.
The data set includes 2 years of data with sampling intervals of 1 min. The data set
includes data from January 1, 2017, to September 30, 2018. The first year (2017) was
used as the training set. This period included 41 events that were tagged manually.
Out of this list, seven events were classified as false events, and the rest were
classified as true events. As explained, only the true events were used. The second
part of the data which was used as calibration set included 25 events. From which
4 events were classified as true events and the remaining 21 as false events. The
difference between the ratio of true and false events with respect to the training and
calibration set may seem strange. However, this is a real-world data set that was
manually classified.

Based on the above calibration set, an RBF value was calculated for each record.
The result of the RBF is shown in Fig. 9.

Table 2 Centroids for the
case study

pH Free chlorine Turbidity

Weight 1.0 1.0 1.0

Point 1 7.5 0.18 0.7

Point 2 7.2 0.28 0.55
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The RBF algorithm was used to detect abnormalities in the data. The full detailed
results are given in the table in Appendix. According to what it is shown there, the
HRL range was between 2.58 and 2.72, and the delay time range was between
10 and 120 min. A summary of the results (lines highlighted in yellow in the table in
Appendix) is shown in Table 3 below. The rows in Table 3 were selected with a
specific policy. This policy was aimed to demonstrate for each Delay On time
(10, 15, 30, etc.), in which HRL the lowest result of non-zero FN is obtained. The
reason for this policy is that the water utility would like first of all to reduce the FN to
minimum, and for that it has to choose the correct HRL. For example, for a delay
time of 10 min, an HRL value of 2.61 results in zero FN events, while a HRL value
of 2.62 results in 1 FN event.

As it can be seen from Table 3 (and from the Appendix), when 10 min delay is
used, the optimal value for HRL that detects all TP events is a value of 2.61. If a
value of 2.62 is used, the system will “miss” one TP event in favor of one FN event.
Assuming that zero FN events are the ultimate target in a water quality system, this
should therefore be the setup. However, as it can be seen from the first row of
Table 3, detecting all TP events with such a setup will come with an “organizational
cost” of 19 FP events. This is labelled as an “organizational cost” because every FP
event requires allocation of resources for verification, for example, sending a
sampling team to the field.

One may ask whether other setups might enable the same level of detection with a
lower level of false alarm. The answer is yes. As it can be seen from Table 1, using a
longer delay time will enable a similar level of detection (all four true events are
detected). This can be seen from the last two lines of Table 3 where the HRL of 2.6
ends with four TP events, zero FN events, and ten FP events. However, these results
should be examined bearing in mind the following. The difference between a delay
of 10 min and a delay of 120 min in a big water system, in case of real contamination,
may be the difference between affecting several thousands of citizens and affecting
several hundreds of thousands of citizens. This is due to the additional network
sections that will be contaminated during the additional time. The trade-off between

Table 3 Summary results of
Run 1

HRL Delay TP TN FP FN Sen Spe

2.61 10 4 2 19 0 1.00 0.10

2.62 10 3 3 18 1 0.75 0.14

2.61 15 4 2 19 0 1.00 0.10

2.62 15 3 3 18 1 0.75 0.14

2.61 30 4 5 16 0 1.00 0.24

2.62 30 3 5 16 1 0.75 0.24

2.6 60 4 6 15 0 1.00 0.29

2.61 60 3 7 14 1 0.75 0.33

2.6 90 4 8 13 0 1.00 0.38

2.61 90 2 10 11 2 0.50 0.48

2.6 120 4 9 12 0 1.00 0.43

2.61 120 2 11 10 2 0.50 0.52
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10 and 19 FP events needs examining. The meaning of ten false events over 9 months
is on average one false alarm every month. The meaning of 19 false alarms over
9 months is on average a false alarm every second week. In both cases, a water utility
will need a sampling team that will be ready to go out per call and take manual
samples to approve or disapprove the indication of the automatic system. Choosing
between the two options is strictly a managerial decision. However, it will be logical
to assume that in most cases an experienced manager will not let an automatic
system shut down water supply without a second manual examination of samples
from the “contaminated” area.

Obviously, if the level of false alarms in the case of a short delay of 10 min would
result in hundreds of alarms per month, the correct policy would be to set a delay of
2 h or more. In this case it seems that a selection of RHL ¼ 2.61 and delay time of
10 min seem logical.

6 Using Other Kernel Functions for RBF

As it was explained earlier in this chapter, other forms of functions may be used as a
kernel function for the RBF. In what follows three different forms of kernel functions
are examined and compared to the first functional form, which has been used until
now. These functions are:

• Run 2: Inverse quadratic – ∅ rð Þ ¼ 1
r

• Run 3: Inverse quadratic – ∅ rð Þ ¼ 1
1þ rð Þ2

• Run 4: Inverse multi-quadratic – ∅ rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
1þ rð Þ2

p

The results and RBF chart of Run 2 are displayed in Fig. 10 and Table 4,
respectively.

Once again, the analysis of the function performance is focused on the point
where it loses the “first TP event.” This happens when the number of FP events is
18 with a delay of 10 min (see second row in Table 4). In case of a delay of 120 min,
this happens at a level of 16 FP events. As it can be seen from Fig. 10, the noise
generated by the second RBF is substantially large relative to the range of the output
of the RBF. The two red arrows in Fig. 10 show that the ratio between the noise and
the range of the RBF is in some periods 50% to 75% of the range. This is a major
disadvantage for this function.

This means that relative to the performance of Run 1 (see Table 3), the Run
2 function performed poorly.

The results and RBF chart of Run 3 are displayed in Fig. 11 and Table 5,
respectively.

Once again, the results are worse than Run 1. Losing the first TP event reduces
only four FP events and increases the delay time from 10 to 120 min. However, as it
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can be seen from Fig. 11, the noise of this function is relatively small. This can be
seen from the red arrows in Fig. 11.

The last results of Run 4 are shown in Fig. 12 and Table 6.
This function performs better than the other runs. As it can be seen from Table 6,

by choosing HRL between 2.82 and 2.83, it is possible to reduce the number of FP
events from 20 to 13 with a cost of a single FN event without increasing the
delay time.

One may ask at this point, what differs the four functions one from the other, and
is it possible just to be looking at the RBF chart to “predict” which RBF will perform
well and which will not? A closer look at Figs. 3, 4, 5, and 6 may reveal the
“patterns” of good functions and “bad” functions. Function 2, which had the worst
performance, has a relatively wide “blue band.” This band is marked with red arrows
in Figs. 4 and 5. And as it can be seen, the band of function 2 is bigger. A bigger band
makes it difficult to observe when a sample leaves the normal zone for the abnormal
zone. A second characteristic, which differs good from bad functions, is the size of
the range where fluctuation of the RBF is located. Comparing Figs. 3, 4, 5, and 6,
one may observe that in Fig. 9 the majority of RBF values are located between 2.6
and 2.72 (see green arrow in Fig. 9). However, in Fig. 12 the majority is between
values 2.8 and 2.86 (see green arrow as Fig. 12). Hence the range of fluctuations in
Fig. 9 is twice as big as the range in Fig. 12. This gives the second criteria for
different RBFs in the vertical axis.

The smaller the range of fluctuations, the easier it is to detect abnormality.

7 Concluding Remarks

This chapter has demonstrated one approach of how RBF can be used to classify
abnormal events in water supply systems directly from manually tagged sensor data.
The methodology is based on prior (manual) classification of events into true and
false events. Once enough true events exist, the set of these events may be used as a
training set. From this stage a second set of events (which contains true and false) are
used for the calibration of the RBF algorithm. The parameters of the algorithm
include the value of the RBF, which is used as a threshold, and the delay time before
an alert is declared. As it was explained early, for the sake of simplicity, the
additional parameters of the RBF have been kept fixed in the current analysis with
a value of 1.

Table 4 Results of Run 2 HRL Delay TP TN FP FN Sen Spe

75 10 4 1 20 0 1.00 0.05

100 10 1 3 18 3 0.25 0.14

25 120 4 5 16 0 1.00 0.24

50 120 3 5 16 1 0.75 0.24
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The performance analysis of each kernel function focused on the main target of
not losing true events, i.e., zero FN events. Hence the simulation was looking for
those parameters, which differ between 100% TP events with minimal FP events.
Based on real-world data and for a specific data set, it was demonstrated that it is
possible to achieve such a target with a level of FP events between one and two FP
events per month. The analysis also clarified the implication of reducing the level of
FP events in relation to the delay time. As it can be seen from the results, going from
two FP events per month to one FP event (in relation to the demonstration data)
implies extending the delay time from 10 to 120 min. This change has implications
for the amount of water users affected by a contamination event.

Finally, the analysis focused on the possibility to “predict” when RBF may
perform well or not. As it was explained earlier, this includes two characteristics.
The function should have a “thin” band and small range of fluctuations. Although
this is not an exact quantitative characteristic (and somewhat subjective), it gives an
efficient tool to select and rank RBFs visually with respect to one another.

The above analysis has both pros and cons. On the negative side, it is limited to a
single data set, and selection of algorithm parameters was done manually, and not all
possible degrees of freedom were used; hence optimal configuration is not
guaranteed. On the positive side, it is a simple approach that can be implemented
relatively quickly with small computational effort. Future research may include
additional data sets with automatic methods for parameter selection.

Table 5 Results of Run 3 HRL Delay TP TN FP FN Sen Spe

2.68 10 4 1 20 0 1.00 0.05

2.69 10 3 2 19 1 0.75 0.10

2.66 120 4 5 16 0 1.00 0.24

2.67 120 3 5 16 1 0.75 0.24
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Appendix: Result of Run 1

HRL Delay TP TN FP FN

2.58 10 4 0 21 0

2.59 10 4 0 21 0

2.6 10 4 1 20 0

2.61 10 4 2 19 0

2.62 10 3 3 18 1

2.63 10 3 6 15 1

2.64 10 3 9 12 1

2.65 10 3 9 12 1

2.66 10 3 9 12 1

2.67 10 1 10 11 3

2.68 10 1 10 11 3

2.69 10 1 11 10 3

2.7 10 0 21 0 4

2.71 10 0 21 0 4

2.72 10 0 21 0 4

2.58 15 4 1 20 0

2.59 15 4 1 20 0

2.6 15 4 2 19 0

2.61 15 4 2 19 0

2.62 15 3 3 18 1

2.63 15 3 6 15 1

2.64 15 3 9 12 1

2.65 15 3 10 11 1

2.66 15 2 10 11 2

2.67 15 1 10 11 3

2.68 15 1 10 11 3

2.69 15 1 12 9 3

2.7 15 0 21 0 4

2.71 15 0 21 0 4

2.72 15 0 21 0 4

2.58 30 4 3 18 0

2.59 30 4 3 18 0

2.6 30 4 4 17 0

2.61 30 4 5 16 0

(continued)

Table 6 Results of Run 4 HRL Delay TP TN FP FN Sen Spe

2.82 10 4 1 20 0 1.00 0.05

2.83 10 3 8 13 1 0.75 0.38

2.81 120 4 5 16 0 1.00 0.24

2.82 120 3 5 16 1 0.75 0.24
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HRL Delay TP TN FP FN

2.62 30 3 5 16 1

2.63 30 3 7 14 1

2.64 30 2 10 11 2

2.65 30 2 10 11 2

2.66 30 2 10 11 2

2.67 30 1 10 11 3

2.68 30 1 10 11 3

2.69 30 1 16 5 3

2.7 30 0 21 0 4

2.71 30 0 21 0 4

2.72 30 0 21 0 4

2.58 60 4 5 16 0

2.59 60 4 5 16 0

2.6 60 4 6 15 0

2.61 60 3 7 14 1

2.62 60 3 8 13 1

2.63 60 3 9 12 1

2.64 60 1 10 11 3

2.65 60 1 10 11 3

2.66 60 1 10 11 3

2.67 60 0 10 11 4

2.68 60 0 10 11 4

2.69 60 0 17 4 4

2.7 60 0 21 0 4

2.71 60 0 21 0 4

2.72 60 0 21 0 4

2.58 90 4 7 14 0

2.59 90 4 7 14 0

2.6 90 4 8 13 0

2.61 90 2 10 11 2

2.62 90 2 10 11 2

2.63 90 2 12 9 2

2.64 90 1 12 9 3

2.65 90 1 12 9 3

2.66 90 1 12 9 3

2.67 90 0 12 9 4

2.68 90 0 12 9 4

2.69 90 0 18 3 4

2.7 90 0 21 0 4

2.71 90 0 21 0 4

2.72 90 0 21 0 4

2.58 120 4 8 13 0

2.59 120 4 8 13 0

(continued)
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HRL Delay TP TN FP FN

2.6 120 4 9 12 0

2.61 120 2 11 10 2

2.62 120 2 11 10 2

2.63 120 2 13 8 2

2.64 120 1 13 8 3

2.65 120 1 13 8 3

2.66 120 1 13 8 3

2.67 120 0 13 8 4

2.68 120 0 13 8 4

2.69 120 0 18 3 4

2.7 120 0 21 0 4

2.71 120 0 21 0 4

2.72 120 0 21 0 4
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However, the development and/or adoption of ICT-focused water innovations in
developing countries does not seem to occur at the expected pace, which calls for
suitable innovation approaches. This chapter investigates how these innovations can
be fostered through partnerships. The explorative analysis of 24 ICT-focused water
innovation partnerships (ICT-WIPs) implemented in Africa leads to two important
findings. First, it appears that these partnerships enable effective exchange of
complementary tangible and intangible resources and co-creation of ICT-focused
water solutions in a cost-effective and timely manner but also pose collaboration
challenges due to the heterogeneity of innovation partners. Second, the analysis
demonstrates the importance of concurrent use of relational (trust-based) and struc-
tural (legally binding control-based) partnership governance mechanisms to mitigate
these challenges, notably by reducing opportunistic behaviours and increasing
clarity of partners’ commitments and rights. We conclude that well-designed
and -implemented ICT-WIPs can contribute to enhancing the capabilities of devel-
oping countries to implement the smart water systems agenda.

Keywords ICTs, Innovation partnerships, Smart water systems, VIA water

1 Introduction

Access to water is indispensable for achieving sustainable development and has been
acknowledged as a fundamental human right [1]. However, due to global challenges
such as climate change, rapid urbanisation and population growth, water systems
around the world are increasingly getting stressed, which threatens water security,
particularly in developing countries [2, 3]. As argued by the World Economic Forum
[4], water crises will be among the greatest social risks for the coming years.
Already, 10 years ago the UN-Water and FAO [5] claimed that the world was facing
a crisis of water security as globally roughly 1.2 billion people experienced water
scarcity problems. Current predictions also show that by 2050, at least one in four
people are likely to live in a country with a shortage of freshwater [6].

In view of these global challenges, sustainable water management is more
needed today than ever. Over the past years, “smart water systems” have emerged
and got promoted as a potential approach to ensure wise management of water
resources, particularly in developing countries [7]. Also referred to as “ICT-enabled
systems”, the purpose of smart water systems is to increase efficiency in water
management by deploying solutions provided by Information and Communication
Technologies (ICTs). This is achieved notably by enabling constant generation and
transmission – to relevant stakeholders – of real-time data and information related to
all aspects of the water cycle, which enables knowledge-based decisions and real-
time solutions to the challenges faced by water systems [8, 9]. The areas in which
ICTs can bring improvements in water management include, but are not limited to,
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mapping of water resources and weather forecasting, mapping and monitoring of
physical water infrastructure, early warning systems, monitoring of water quality,
consumer service delivery, water governance and operations of water sector orga-
nisations [10, 11].

Despite the benefits associated with the implementation of ICTs in water man-
agement, the development and adoption of these innovations by water sector insti-
tutions seem not to occur at the expected speed, and there are great variations in the
way ICTs are adopted [12]. On the one hand, this situation can be attributed to the
specific nature of the water sector. For example, Tutusaus et al. [13] describe how the
idiosyncrasies of the water services sector – e.g. monopolistic nature, social and
economic importance and commercialisation of public water utilities – influence the
adoption of ICTs. On the other hand, the innovation strategies used to foster ICTs
matter. Particularly, it has been argued that the promotion of ICTs in the water sector
can only be achieved through a partnership approach, based on open innovation;
only then can appropriate ICT-based solutions be developed and integrated in water
systems [7, 10, 14]. However, what the ICT-focused water innovation partnerships
(ICT-WIPs) approach entails, the challenges associated with it and how they can best
be prevented or dealt with are issues that are rarely addressed in the ICT and water
literature. This chapter aims to bridge this gap.

The research reported in this chapter is explorative, and the analysis is based on
24 ICT-WIPs. The innovations are funded by VIA Water – a Dutch programme to
foster water innovation in African cities [15]. Drawing on insights from three
theoretical perspectives – innovation systems, open innovation and governance
perspectives – this chapter sheds light on the complexity of ICT-WIPs and on the
need to devise appropriate partnership governance mechanisms. The study finds that
the partnerships analysed make a clear distinction between at least two categories of
partners: implementing partners and non-implementing partners. Partnering organi-
sations exchange resources (material and immaterial) that enable cost-effective and
timely generation and/or adoption of ICT-focused water innovations. The study
further establishes that the partnerships simultaneously utilise relational governance
(trust) and structural governance mechanisms to ensure effective resource exchange.
However, we observe limited use of legally enforceable instruments (such as
contractual agreements) in the ICT-WIPs analysed in this study, which partly
explains the problems reported in some of the partnerships. We conclude that
successful ICT-WIPs rely on careful selection of partners, design of appropriate
resources exchange mechanisms, genuine engagement of non-implementing part-
ners and complementarity between legally binding control and trust-based gover-
nance mechanisms.

The remainder of the chapter is structured as follows. Section 2 briefly describes
the potential of ICTs for effective and efficient management of water systems,
particularly in developing countries. Section 3 presents the theoretical context of
the study and defines the focus of the analysis. Section 4 discusses the methodology
followed in this chapter. Section 5 presents and analyses the results. Section 6
discusses the findings using the theoretical insights presented in Section 3. The
final section concludes the chapter, with a reflection on the potential of innovation
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partnerships as an approach to foster the smart water systems agenda in the context
of developing countries, the practical implications (of the major insights arising from
the study) for effective design and execution of innovation partnerships for smart
water systems in developing countries, as well as recommendations for future
research and for VIA Water.

2 ICTs and Water Management in Developing Countries

Fresh and adequate water resources are crucial for achieving sustainable develop-
ment. However, water systems around the world are expected to be stressed by
societal challenges such as climate change and its effects (e.g. flooding and
droughts), rapid human population growth and urbanisation [16, 17]. These phe-
nomena will have negative effects on the quality and quantity of water resources, the
capacity of water infrastructure and the cost of water services, therefore threatening
water security, particularly in developing countries [2, 3]. Water security problems
in developing countries are further exacerbated by current inefficient and
unsustainable water management practices, as evidenced by high water loss rates
(in terms of non-revenue water [NRW])1 observed in most water service providers
and situations of over-exploitation of water resources which cause physical water
scarcity in many countries.

Ineffective management of water systems stems also from the unreliability of
conventional approaches, due to the increasing complexity of water problems. For
example, extreme weather variability due to climate change has rendered reliance on
historical hydrologic weather patterns for predicting future variables impracticable;
traditional water data and information gathering and transmission mechanisms are
no longer (cost) effective; and with increasing concerns about good governance in
the water sector around the world – particularly in developing countries – traditional
top-down management approaches are no longer preferred. Thus, efficient water
management is more needed today than ever, and there is growing consensus on the
need to rethink the overall management of water resources.

Over the past decades, the potential of ICTs to improve water management in
developing countries has been demonstrated, notably through implementation of the
smart water systems concept. Smart water systems use ICT applications at all levels
of the water cycle to maximise efficiency of water management, thus promoting
water security. Table 1 displays the main areas of water management where ICTs
can bring about improvements in developing countries, with examples of ICT
applications that are relevant for the water sector and associated benefits.

1NRW from water distribution systems worldwide is estimated at 48 billion cubic meters per year of
which 55% occurs in developing countries [18]. An important proportion of NRW (physical losses)
is generally attributed to the ageing and subsequent deterioration of water infrastructure, because of
poor operation and maintenance activities as well as slow the replacement process.

170 S. Mvulirwenande and U. Wehn



3 Theoretical Context and Focus of the Study

This analysis conducted in this chapter draws on three theoretical perspectives. The
innovation systems and open innovation perspectives help to explain the rationale
behind innovation partnerships in fostering smart water systems in developing coun-
tries (and beyond) and what these partnerships entail for ICT-focused water innova-
tion processes. The governance perspective provides insights into the mechanisms
through which these innovation partnerships can best be managed to maximise
their benefits and mitigate possible problems associated with their implementation.

Table 1 Key areas of ICT in water management and ICT tools

Areas for ICTs
in water
management Examples of ICT tools Benefits for water management

1. Weather
forecasting

Remote sensing satellite systems; in
situ terrestrial sensing systems; wire-
less sensor networks; geographical
information systems (GIS)

High-quality and standardised obser-
vations of the atmosphere and ocean
surface; real-time exchange of mete-
orological data and information

2. Mapping of
water
resources

GIS; satellite mapping; water portal
systems; supervisory control and data
acquisition (SCADA)

Improved understanding of the water
resource base; improved knowledge
of current levels of water abstractions
and use; improved prediction of water
resources supply and demand

3. Asset
management

GIS, buried asset identification and
electronic tagging; smart pipes, hand
pumps and meters; supervisory con-
trol and data acquisition (SCADA)

Improved management of distribution
networks; reduced water losses;
reduced network damage
And deterioration; reduced risk of
infection in the water system; short-
ened response time, reduced mainte-
nance costs

4. Early warn-
ing systems

GIS; sensor networks; early warning
websites; mobile phone applications;
digital delta

Improved reservoir management;
flood mapping; improved data man-
agement (quick acquisition,
processing, analysis and dissemina-
tion to warn the public)

5. Water
demand
forecasting

GIS, ground penetrating radars; opti-
cal and pressure sensors; cloud com-
puting; SCADA

Rain/storm water harvesting; man-
aged aquifer recharge; improvements
in water resource management

6. Service
delivery

e-payment systems; GIS; call centres Improved service delivery: timely
access to water information, opera-
tional efficiency of water sector insti-
tutions – shortened response time,
improved financial management,
increased revenue collection

7. Governance
and
visualisation

Smart mobile phone applications;
websites

Improved public participation, trans-
parency and accountability; improved
customer relations

Based on Mauree [19] and Ndaw [10]
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Before discussing these theoretical perspectives and describing the focus of the
ICT-WIPs analysis, we define the concept of innovation partnerships as used in this
study.

3.1 Innovation Partnerships

The literature on inter-organisational cooperation emphasises that the internal capa-
bilities even of large organisations are often limited and these organisations are
forced to compensate their weaknesses by teaming up with others [20]. Innovation
partnerships are one of the possible strategies that organisations can use to strengthen
their innovation capabilities. Other mechanisms include, for example, acquisitions
and mergers [21]. A variety of terms are used in the literature that are closely related
to the concept of innovation partnerships used in this study. For example, Hagedoon
and Schakenraad [22] describe strategic technology partnering as the “establishment
of cooperative agreements aimed at joint innovative efforts or technology transfer
that can have a lasting effect on the product-market positioning of participating
companies”. In the same vein, DeMan and Duysters [23] define strategic technology
alliances as “cooperative agreements in which two or more separate organizations
team up in order to share reciprocal inputs while maintaining their own corporate
identities”. These terms describe the same reality: a type of relationship in which
organisations agree to jointly conduct innovative activities. However, the terms
appear to be essentially biased in the sense that they seem to suggest that cooperation
agreements between innovating organisations must always be for strategic reasons.
The word “technology” included in these terms also seems to suggest that these
agreements basically concern technological innovations, involving research and
development in high-tech industries. These biases may be due to the fact that these
authors draw on corporate sector experiences.

In this chapter, we propose the term “innovation partnership” because we deem it
to be more neutral and inclusive. Departing from the above definitions, we refer to
innovation partnerships in this study as arrangements in which innovating organi-
sations and other relevant stakeholders cooperate with the objective to innovate
together while maintaining their own identities. This objective is achieved through
ongoing exchange of resources that are necessary to successfully conduct innova-
tion activities. Defined in this way, the concept of innovation partnerships accom-
modates cooperation agreements for both technological and non-technological
innovation ventures and those entered into for reasons other than “strategic”. In
the corporate sector, strategic reasons for which companies enter into innovation
partnerships often refer to reasons such as cost and risk reduction, exploration of new
markets and market niches, etc. However, partnerships can also be crafted to pursue
innovations that are not market/business-oriented and which can involve a variety of
other actors in the operating environment. This is mostly the case in public sector
innovations where relevant stakeholders are engaged to share their knowledge,
information and experiences and to generate innovations that are relevant to them.
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Finally, we define innovation partnerships as arrangements that can be short or long
term, depending on the focal issues being considered. As described in the sections
below, innovation partnerships as an approach is rooted in the broad theories of open
innovation and innovation systems.

3.2 Open Innovation and Innovation System Theories

Traditionally, innovation has been conceived as a closed activity – being driven and
controlled internally by innovating firms in the private sector and knowledge
institutions (e.g. universities, research centres) in the case of science-driven innova-
tion. Following this approach, innovating organisations are expected to generate
their own ideas and transform them into business opportunities on their own (and
using their own resources). Over the past decades, “open” innovation has emerged as
a new perspective on innovation, based on the assumption that innovating organi-
sations can and should use internal as well as external ideas (and other resources) and
internal and external paths to market. This means that internal ideas can be taken to
market through external channels, but ideas can also start outside the firm’s own labs
and move inside [24]. Thus, in today’s globalised world, organisations no longer
develop innovations in isolation; they partner with other organisations to develop
innovations which they would hardly realise without the supplement of resources of
a network of actors [25]. It should be emphasised that while innovation in the private
sector is generally driven by the desire to remain competitive in the market and
increase profits, the main driver for public sector innovations is to create greater
public value or improvements in the public sphere – e.g. by introducing new
working practices and approaches (such as citizen participation in government pro-
jects, devolution of decision-making powers).

The open innovation literature acknowledges partnerships as an excellent way to
innovate cost-effectively and time efficiently [26]. In line with the resource-based
view (RBV) (more specifically the knowledge-based view) of the firm [27, 28],
“open innovation” as an approach acknowledges that companies in an industry (such
as the water sector) are heterogeneous regarding the resources they possess and that
this heterogeneity is partially preserved by the difficult mobility of these resources.
A firm’s resources fall into two categories, material and immaterial, and they
span from all assets to capabilities, organisational processes and knowledge that it
uses strategically to gain competitive advantage [27]. Organisational knowledge
(e.g. embodied in its staff and systems) is considered to be the most strategically
important resource and enabler of innovation, particularly tacit knowledge which is
generally difficult to imitate by competitors [28]. Under these circumstances, it is
argued that innovation partnerships enable partnering firms to overcome the resource
immobility problem. Partnerships are essentially crafted and executed to allow
resource flows between organisations and, as such, create new entities with strength-
ened innovation capabilities [29, 30]. Thus, in selecting innovation partners, com-
panies ought to carefully examine the extent to which their resources will be
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complemented by those of the partners. According to Nooteboom [31], knowledge
transfer between partners is the core of every innovation partnership, and human
resource exchange is recommended as an effective way to ensure effective transfer
of both tacit and explicit knowledge [32]. However, innovation partnerships have
other motives such as allowing partnership members to share innovation costs as
well as risks [33].

Open innovation is consistent with the systems approach to innovation. The latter
emphasises that innovation does not take place in vacuum, but rather it is developed and
implemented in a collaborative process whereby innovating organisations interact, rely
and learn from other entities in their operating environment. The systems approach
became popular in the 1980s through seminal works by researchers such as Freeman
[34], Lundvall [35] and Nelson [36] and as an alternative to the linear model of
innovation. The linear perspective assumes that innovation starts with basic research
which leads to development and then development leads to production and production
to marketing and diffusion [37]. In contrast, the innovation systems perspective pulls
away from the view that innovation is necessarily and primarily related to research
activities and acknowledges the role of other players in the innovation process.
Innovation is seen as part of a larger system of actors and institutions and thus a
complex and interactive process [37, 38]. Viewed as systems, innovation partnerships
can involve loose and or contractual arrangements between companies; they can also
involve weak and strong ties among partnership members [39].

Innovation partnerships are associated with many challenges and risks – not just
benefits. In addition to the challenges associated with the transfer on knowledge itself
(e.g. lack of capabilities to value and tap into the knowledge possessed by other
partners), innovation partnerships raise questions such as how to prevent exchanged
knowledge from being used opportunistically by some partners and how to deal with
issues such as conflicting goals of innovation partners, partnership coordination costs
and the problem of appropriation of innovation outputs [28, 40–42]. As described
below, good governance mechanisms are required to overcome such partnership
challenges and risks.

3.3 Structural and Relational Perspectives on Partnerships

The literature suggests a variety of mechanisms that enable the creation and
execution of stable and effective innovation partnerships. These mechanisms gen-
erally draw on two major theoretical perspectives: structural and relational
[43, 44]. The structural perspective, which is based on transaction costs economics
[45], considers innovation partners as rational, calculating and self-interested actors,
which may induce in fact opportunistic behaviour. Thus, this perspective posits that
partnerships should be formalised through the use of official administrative coor-
dination and control mechanisms. Structural governance involves frameworks that
specify the obligations and rights of innovation partners and are codified into
written documents [46, 47]. These frameworks may include court enforceable
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contracts and noncontractual agreements that are internally enforceable documents –

such as job descriptions, division of tasks, rules and procedures [48]. Critics of
structural governance mechanisms argue that they are too expensive (due to the
transaction costs involved) and too restrictive concerning creativity and flexibility
[49–51].

The relational perspective builds on social exchange theory according to which
human beings are social, capable to trust and be trusted [52–54]. As described by Gil
[55], relational governance is one in which the partners’ personal relations (e.g. social
norms such as trust, cooperation and solidarity) are deeply intertwined with their
economic exchange. This perspective suggests that opportunistic attitude and behav-
iour of partners can be overcome as they get to know each other. Trust-based
relationships are therefore believed to be the potential asset that needs to be developed
over time for the partnership to yield high returns [56]. With trust, partners expect
each other’s behaviour and willingness to adhere to commonly accepted principles or
individual commitments [57, 58]. Governance mechanisms associated with this
perspective emphasise safeguards that are self-enforcing through social interaction
and control. They further rely on informal norms and rules (not written in any
documents) to indicate how responsibilities and rights are distributed among partners
[59, 60]. Some literature often describes relational governance and structural gover-
nance as being mutually exclusive [61]. However this view has been challenged by
evidence suggesting that the two perspectives are complementary. Structural gover-
nance is increasingly perceived as providing a solid basis for creating trust, especially
in partnerships where members do not know each other or have not collaborated
before [44, 46, 58, 62].

In this discussion, the influence of national culture on the extent to which
partnering organisations use and/or prefer either structural or relational perspectives
must be emphasised. In line with Hofstede’s [63] widely used cultural dimensions
(uncertainty avoidance, individualism versus collectivism, masculinity versus
feminity and power distance),2 it is expected that organisations from a country
dominated by a certain culture will prefer a particular governance perspective over
another. For example, organisations coming from individualistic cultures would rely
more on structural mechanisms, while those from collectivist cultures would prefer

2Power distance is defined as the extent to which the less powerful members of institutions and
organisations within a country expect and accept that power is distributed unequally (p. 28).
Individualism pertains to societies in which the ties between individuals are loose: everyone is
expected to look after himself or herself and his or her immediate family. Collectivism as its
opposite pertains to societies in which people from birth onward are integrated into strong and
cohesive in-groups, which throughout people’s lifetimes continue to protect them in exchange for
unquestioning loyalty (p. 51). Masculinity pertains to societies in which social gender roles are
clearly distinct (i.e. men are supposed to be assertive, tough and focused on material success,
whereas women are supposed to be more modest, tender and concerned with the quality of life.
Femininity pertains to societies in which social gender roles overlap (i.e. both men and women are
supposed to be modest, tender and concerned with the quality of life) (pp. 82–83). Uncertainty
avoidance is defined as the extent to which the members of a culture feel threatened by uncertain or
unknown situations (p. 167).
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relational mechanisms. The reason being that in individualistic societies, people and
organisations tend to be more rational in their dealings and comfortable with
performance and incentive systems that are contract-based, for instance. Conversely,
members of collectivist societies are more strongly driven by social factors and
values such as seeking long-term relationships, trust and harmony, all of which are
compatible with relational governance. In a similar vein, in cultures where people
and organisations are more comfortable with ambiguity and uncertainty, innovation
partners are likely to favour relational governance mechanisms, whereas in uncer-
tainty avoidance cultures, characterised by a desire for discipline and clear rules,
organisations would feel comfortable with structural governance mechanisms
[64, 65].

3.4 Focus of the Study

Drawing on the concepts and theories discussed in this section (and in Sect. 2), we
propose to focus the analysis of ICT-WIPs on the following three sets of variables:
(1) characteristics of ICT-WIPs, (2) resources exchange during the execution of
partnerships, and (3) ICT-WIPs governance mechanisms. These variables represent
three important areas that are critical for understanding the dynamics of innovation
partnerships that aim at fostering ICT-enabled water systems in developing coun-
tries. This understanding is a prerequisite for successfully setting up and managing
these partnerships. Figure 1 schematically represents the focus areas of our analysis.

4 Methodology

4.1 Selection of Cases

The research reported in this chapter focused on ICT-WIPs implemented in Africa
within the framework of VIA Water, a programme supporting innovative projects for
water problems facing cities in Benin, Ghana, Kenya, Mali, Mozambique, Rwanda,
South Sudan, Senegal and Ethiopia. Funded by the Dutch Ministry of Foreign
Affairs, VIA Water was hosted (until December 2017) by the IHE Delft Institute
for Water Education and its fund managed by Aqua for All – both based in the
Netherlands. From January 2018 both VIA Water secretariat and fund are managed
by Aqua for All. In addition to seed capital investment, VIA Water provides other
support services (such as coaching, training and networking) to the innovation
partnership members. The programme focuses on 12 strategic innovation areas, the
so-called pressing water needs: drinking water, sanitation, water in urban agriculture,
water harvesting, groundwater, water quality, data, institutional strengthening,
water allocation, financial arrangements, urban planning and floods and droughts.

176 S. Mvulirwenande and U. Wehn



Further details on this programme can be found in Nagel et al. [15] and
Mvulirwenande et al. [66]. The reasons for selecting cases from this programme are
twofold. On the one hand, most VIA Water projects are implemented through
partnerships. The programme promotes this approach and encourages lead applicants
to partner with other organisations to ensure successful innovation processes – both at
pilot- and large-scale implementation stages. As of 2018, the programme had
supported 64 water innovation projects of which 25 are ICT-focused (they are either
entirely ICT or have an important ICT component) (see description in Table 2). The
analysis in this chapter is focused on the 24 ICT-focused projects that are
implemented through partnerships (only 1 is not); they cover a variety of areas in
which ICTs can make a contribution in promoting smart management of water
resources and sanitation. This is a reasonable number of cases on the basis of which
insights can be generated on how to successfully design and manage innovation
partnerships for smart water systems. On the other hand, the fact that all 24 projects
were developed and supported through one support programme implies that we are
able to have easy access to data and information related to these innovations – notably
through the VIA Water database. Of note is that most of the ICT-WIPs analysed in
this study are not yet completed, and, for some, little information is available about
their performance. This implies that it is still too early to evaluate their success rates
and success factors.

ICT-WIPs

governance mechanisms

- Structural (control) 

- Relational (trust)   

Characteristics of 

ICT - WIPs

- Nature of innovations

- Formation of partnerships

Resources exchange 

in ICT-WIPs

- Types of resources

- Exchange echanisms  

Fig. 1 Focus areas for analysing ICT-WIPs
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Table 2 Description of VIA Water-supported ICT projects

Name of project Short description Lead innovator

Rwanda

1. Scaling mobile IT for
safe water enterprises

Builds an open-source IT platform for
safe water enterprises (SWEs) to be
able to monitor who purchases water
and where they live, how and how
well it’s delivered and how well it is
produced (water quality, volumes,
etc.)

dloHaiti

2. Pay your relatives’
water bills

Offers an online platform on which
Rwandan diaspora can pay various
services to benefit their relatives back
in Rwanda, making sure the money
sent by Rwandan diaspora will defi-
nitely pay water only. The payment
technology is integrated with the
public water company and the water
kiosks systems

Markets Merger Ltd

3. Storm forecasts for
Musanze

Helps city residents and farmers get
weather predictions with alerts on
floods and lightning on their phones.
The innovation works with innova-
tive low-cost lightning data detectors
to track lightning strikes in an area
and produce alerts

Delft University of
Technology

Ghana

4. Self-billing and pay-
ment of water bills

Deploys a mobile phone-based bill-
ing system that will allow customers
of Ghana Water Company Limited
(GWCL) to self-bill and pay water
tariffs. Project further provides a
platform through a social control
check that will help prevent
non-revenue water losses

SkyFox Ltd

5. Knowledge building
through Water Technol-
ogy Academy

Introduces so-called online Water
Technology Academy, allowing local
operators and technicians have 24/7
access to all the knowledge they need
to successfully fulfil their tasks. Users
can also use the academy to share
their knowledge mutually and easily
create a knowledge and experience
database

Empower People

6. GARV smart public
toilets

Introduces toilets that are regularly
maintained through self-cleaning
mechanisms and real-time monitor-
ing and equipped with a biodigester
tank

SnapEX Overseas

7. Flash flood forecasting
app

Provides early warning for flooding
via state-of-the-art modelling

Royal HaskoningDHV

(continued)
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Table 2 (continued)

Name of project Short description Lead innovator

techniques. Satellite data is
transformed into highly detailed
rainfall data. An innovative algorithm
provides rainfall forecasts. This is
input for a flood model that provides
flood maps on street level

8. Flood risk assessment
methods

Collects urban drainage data through
crowd sourcing; uses a
multidisciplinary approach with
social, technical and institutional
aspects and a communication strategy
(i.e. by social media) to create
awareness and commitment among
citizens

HKV Consultants

Kenya

9. TAP21 purified water
distribution in the
twenty-first century

Introduces a franchise business
model, whereby vendors dispense
purified water via 24/7 prepaid water
ATMs. Payments and performance
are monitored online

Maji Milele Ltd

10. Maji Mkononi –

helping communities in
Kibera

Enables community members to use
their mobile phone to acquire infor-
mation about location and real-time
availability of water at water points
while providing water providers with
essential information and water level
data from their water points

MobiTech Water Solutions

11. Reducing water loss
by improved data
systems

Seeks to minimise water losses by
developing wireless sensors to collect
data on water flow, pressure, levels –

readings serve as early warning sig-
nals for burst and leakages or water
theft. Sensors are used under the free
radio frequency spectrum to transmit
data into a consolidated dashboard
(alongside SIM card-based data log-
gers) to decision-makers

Upande Ltd

12. Exploration of sales
channels for organic
fertiliser

Uses online methods (social media)
and a mobile platform to disseminate
information about their products –

biosolids-based organic fertiliser and
insect-based animal feed all made
from human waste

Sanergy

13. eSOS: efficient and
intelligent toilets

eSOS (emergency Sanitation Opera-
tion System) makes maximum use of
novel ICTs combined with the state-
of-the-art toilet and novel technology
for faecal and septic sludge treatment.
The eSOS concept provides a unique

IHE Delft Foundation

(continued)
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Table 2 (continued)

Name of project Short description Lead innovator

set of features that allows integrated
smart and real-time monitoring,
operation and maintenance of sanita-
tion system components

14. Chezo serious
gaming

Gives gaming companies an
ICT-based perspective into creating
games other than purely fun games,
which could add revenue streams

Upande Ltd

Mozambique

15. Smart water metre
reading, Mozambique

Allows water utilities bill their cus-
tomers more efficiently and transpar-
ently using advanced smartphone
technology that registers water con-
sumption by taking a picture and
automatically communicates vali-
dated usage values to the billing sys-
tem of operators

Mobile Water Management

16. Water quality moni-
toring with a DNA-based
field device

Introduces a DNA-based detection
technology that can be used in the
field to improve water quality moni-
toring and generate more digital data
on water quality as well as making
data faster, more affordable and more
accurate. Detects DNA of human
pathogens in water samples using an
innovative field device and by inte-
grating the digital data generated
directly into web-based monitoring
systems

Orvion B.V.

17. App service for fae-
cal sludge management
(PULA)

Develops a cloud-based application
called PULA, which provides real-
time data to both businesses and
municipalities/city authorities for
improved faecal sludge management
FSM

BoP Innovation Center and
Water & Sanitation for the
Urban Poor (WSUP)

18. Virtual latrines for
improved sanitation

Introduces a sanitation marketing tool
which eases the communication of
complex messages and needs little
literacy. Equips activation agents
with a smartphone and a lightweight
(and low-cost) VR headset, as they go
door by door. By offering a VR
experience viewers are presented
with a virtual bathroom (either
entirely based on 3D models or
sourced from 360 video footage),
which gives them a better under-
standing of what an investment in

BoP Innovation Center

(continued)
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Table 2 (continued)

Name of project Short description Lead innovator

sanitation could bring to their imme-
diate environment

Mali

19. Map action Bamako,
Mali

Introduces an online and interactive
map of Bamako and a mobile appli-
cation through which community
members are able to report WASH
problems and propose solutions rec-
ommendations. A report is created
and transmitted to the companies
subscribed to the platform that are
responsible for taking action

Kaicedra-Consulting

20. Geolocating water
quality

Mobile application called Akvo
Caddisfly and pocket-size hardware
attachments are used for the first time
to test water quality. Akvo Caddisfly
is a simple, low-cost, open-source,
smartphone-based water quality test-
ing system connected to an online
data platform. Real-time GPS-based
water quality data is shared via
Akvo’s data collection platform

World Waternet

21. Innovative sanitation
services for Bamako

Develops a call centre and an inno-
vative approach of sanitation market-
ing to optimise the encounter
between offer (emptiers) and demand
(households). It also creates a
smartphone application as an instru-
ment to monitor the emptiers’ tech-
nical and financial performances

Protos

22. Water quality data of
the Niger River

Uses ICTs for data collection on the
water quality of the Niger River,
storage and analysis (smartphones
and underwater drone, central repos-
itory) and sharing it in appropriate
formats for various target groups

Agence du Bassin du Fleuve
Niger (ABFN)
Niger River Basin Agency

23. Mapping and moni-
toring critical develop-
ments in Niger Delta

Develops a platform with data on the
Niger Delta. The analysed data is
aggregated from (a combination) of
satellite data, online (social) media,
remote sensing and user-generated
data sources and will lead to infor-
mation on the longer-term drivers and
effects of floods and droughts

FloodTags

Benin

(continued)
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4.2 Data Collection and Analysis

Our analysis draws on secondary as well as primary data. We reviewed a variety of
relevant documents related to the ICT-WIPs available in the VIA Water database.
The documents include project proposals submitted to VIA Water by the innovating
organisations, project contracts signed between the VIA Water Fund Manager and
the lead partner, as well as interim and final project reports. We also consulted VIA
Water corporate documents, reports (including those produced by consultants hired
for specific assignments) and website. In the VIA Water online learning platform,
project owners post useful information related to the day-to-day management of their
innovations. Our analysis further draws on interviews with representatives of
10 ICT-WIPs in Ghana (July and November 2017), Kenya (September 2017) and
Mozambique (February 2018), and discussions held with VIA Water managers – all
of which resulted in primary data and information. Relevant information was also
collected via informal discussions held with representatives of the ICT-WIPs at VIA
Water events such as the sharing skills seminar in Ghana (November, 2017) and the
“VIA GO” event organised at the Amsterdam Water Week Conference (October,
2017). The analysis conducted in this research is purely qualitative. For the analysis,
we used the key themes selected based on the theoretical framework used in this

Table 2 (continued)

Name of project Short description Lead innovator

24. Warning system for
water shortages
(ALERTE)

Establishes a warning system for
water shortages in the Société
Nationale des Eaux du Bénin
(SONEB) water company network,
by using ICT. An Internet- and
SMS-based alert system informs cli-
ents about planned and unplanned
cuts in the water supply and possible
options they have to store, treat or get
water

Benin Country Water Part-
nership (PNE-Bénin)

Senegal

25. The Greening Plastic
project in Senegal

Introduces portable sampling devices
– passive samplers – in the monitor-
ing of soil and water quality. Once
located in the soil or water, passive
samplers collect lab information on
chemical concentrations of sub-
stances, which can then be analysed
in a remote lab

Deltares

aNote that there are no ICT-focused water projects supported by VIA Water in South Soudan and
Ethiopia
bThis project is not implemented through a partnership. So the analysis in this chapter focuses of
24 projects
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chapter. With these themes, matrices were first created in which the data and
information collected was systematically captured; then a meta-analysis was
conducted.

5 Results and Analysis

This section presents a meta-analysis of the 24 VIA Water ICT-WIPs, using the
3 sets of variables presented in Sect. 3.4 as a structuring framework. The variables
are (1) characteristics of ICT-WIPs (nature of innovations, types of partners, forma-
tion of partnerships), (2) resources exchange during the execution of partnerships
(types and exchange mechanisms) and (3) partnership governance mechanisms. This
section further analyses some of the challenges reported by the VIA Water
ICT-WIPs.

5.1 Characteristics of VIA Water ICT-WIPs

5.1.1 Nature of Innovations

As indicated previously, the VIA Water programme supports innovations that
address water challenges in urban environments – so are the ICT-focused water
innovations analysed in this study. Figure 2 illustrates the relationship between the
components of a (simplified) urban water system and different ICT-focused water
innovations supported by VIA Water as described in Table 2. The numbers indicated
in Fig. 1 correspond to the numbers assigned to the innovation projects in Table 2. It
should be noted that some innovation projects relate to several components (of the
water cycle) simultaneously, which makes it difficult to assign them to one particular
component. For example, the (online) interactive map and associated mobile appli-
cation proposed in the Map action Bamako project in Mali (# 19) allow community
members to report any WASH (water, sanitation and hygiene)-related problems, and
these could be identified at any of the components of the urban water cycle. Such
ICT-focused water innovation projects were placed in the centre of Fig. 2 (see the
quad arrow pointing in multiple directions).

The ICT-focused water innovations supported by VIA Water are diverse, but they
all aim at improving urban water management by enabling real-time monitoring of
urban water systems and knowledge-based decision-making (with regard to different
components of the urban water cycle). The water innovations that serve the objective
of “real-time monitoring” relate to the monitoring of both water quantity and quality.
They involve ICTs that allow, among other things, real-time leak detection and real-
time networks monitoring (e.g. Upande’s Non-Revenue Water reduction project in
Kenya, # 11) and real-time water quality management (e.g. World Waternet’s
Geolocating water quality project in Mali, #20, Orvion BV’s Water quality
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monitoring with a DNA-based field device in Mozambique, # 16). Other innovation
projects serve the objective of “visualisation and decision support” for different
types of relevant stakeholders. For example, the Maji Mkononi project in Kenya
(#10) and the Warning system for water shortages (ALERTE) in Benin (#24) use
mobile phone applications to provide water consumers with better information about
water supplies (availability, location, planned and unplanned cuts). Based on this
information, people can decide when and where to get water. In the similar vein,
Storm forecasts for Musanze in Rwanda (#3) and Flash flood forecasting app in
Ghana (#7) set up early warning systems that can be used by a variety of actors
(citizens, municipalities, etc.) to mitigate the risks associated with events such as
floods and lightning.

It is also observed that the ICT-focused water innovations analysed in this study
make use of a variety of ICT tools including mobile phones, GPS mapping and
websites. However, mobile phones are used in more than 17 projects (out of 24).
This is not surprising though; in fact, given that mobile technology is a fast growing
market in Africa, innovators in many sectors (such as health, agriculture, energy,
water) are leveraging this increasingly available resource on the continent.
According to GSMA Intelligence, sub-Saharan Africa alone accounts for nearly a
tenth of the global mobile subscribers. In 2016, the penetration rate in this region was
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Fig. 2 VIA Water ICT-focused innovations in the urban water cycle
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estimated to be 43%, with 420 million unique mobile subscribers of which
smartphone connections were nearly 200 million [67].

Finally, the ICT-focused water innovations analysed in this study seem to fit with
the realities of African countries – they arguably tend to be low-cost and affordable
to potential customers. For example, in the Reducing water loss by improved data
systems project in Kenya, Upande develops and tests low-cost wireless water flow
meters and low-cost pressure and level sensors that can be sold to water utilities at
affordable prices. Within the Storm forecasts for Musanze project, the Trans-African
Hydro-Meteorological Observatory (TAHMO) is introducing its inexpensive3 but
robust weather stations in Rwanda. Many of the mobile phone applications being
supported by the VIA Water programme enable citizens to easily take measurements
on water levels (e.g. of rivers), evaluate them and send information and images by
phone to relevant authorities. Using these applications seems to be far more cost-
effective, reliable and timely than traditional data collection and transmission infra-
structure. Although it is still early to conclude that these technological innovations
really provide robust solutions to the problems facing water systems in African
countries, it is interesting to see that they all were developed with the same spirit of
“being easy to use, cheap and durable”. Our analysis suggests that this was triggered
by the fact that the VIA Water selection criteria emphasise both technical and social
sustainability aspects of the innovations. The applicants had therefore to ensure that
the proposed innovations are appropriate to the local circumstances and affordable
for local users.

5.1.2 Formation of ICT-WIPs

The analysis conducted in this study suggests that the VIA Water programme played
an important role in the formation of investigated ICT-WIPs, by creating conditions
that encouraged innovators to team up. As a matter of fact, the VIA Water
programme actively promotes innovation partnerships, notably between African
and foreign organisations. This is clearly indicated in the programme’s entry criteria
[69]. Applicants outside Africa need to have at least one African partner. Thus, as
most of the ICT-WIPs analysed in this study have a Western lead innovator, the VIA
Water conditions required them to have an African partner. In the case of African
applicants, VIA Water encouraged these to team up with possible Western partners,
but this was not a “hard” condition. Our empirical findings suggest that, in some
cases, lead innovators selected their working partners based on earlier experience
working with them, perceived ability of the partners to complement their resource
gaps and/or their strategic positions in the water sector of the country of project

3The cost of a station is evaluated at only $500: this cheap price is achieved notably by leveraging
on already existing low-cost sensors (as found in objects ranging from washing machines to cars
and smart phones) and using them as weather or water sensors. For example, the simple piezo
buzzer (costing $1), which is used in fire alarms, is used to measure rainfall intensity [68].
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implementation. The study further found that VIA Water has played an instrumental
role in facilitating the actual formation of many of the partnerships, thus acting as an
innovation broker [70]. The partnership formation support was provided through
matchmaking mechanisms. During the project selection phase, VIA Water managers
would scan their network and propose (where relevant) possible cooperation partners
(e.g. universities, companies in the Netherlands) to the applicants. Examples include
the GARV toilet project in Ghana in which VIA Water facilitated linkages between
SnapEX Overseas – the lead partner – and Advocates and Trainers for Women’s
Welfare Advancement and Rights (ACTWAR). By establishing the online learning
community, VIA Water further anticipated – among other things – that some
organisations could use the platform to link up with potential partners [66].

The VIA Water-supported ICT-WIPs generally make a distinction between two
major categories of partners (Fig. 3). The “implementing partners” category consists
to begin with of the lead innovator (s) – that is the organisation (s) who, usually,
comes up with an ICT-based water innovation idea and identifies prospective
partners with whom to implement the idea. In the context of VIA Water, lead
innovators submit the so-called teaser – a two page document in which they describe
their innovative idea, interact (on behalf of other partners) with VIA Water managers
and are responsible for the coordination of day-to-day management of the innovation
process. Another important partner are the working partners – these work closely
with the lead innovator and actively participate in the day-to-day implementation of
the innovation process. Participation is either through joint activities with the lead
innovator or by executing specialised tasks based on the distinct capabilities that
they possess. Working partners in the VIA Water ICT-WIPs include mainly pro-
viders of technologies, customers and contributors of specialised knowledge that is
not available at the lead innovator.

Overall, implementing partners are directly involved in the development and
implementation of the innovation project and contribute knowledge and other
types of resources to ensure successful innovation. When ICT-WIPs are profit-
oriented, implementing partners are also entitled to share the profits of the innovation
process and liable for the debts of the partnership.

The “non-implementing partners” category is made up of partners who are
indirectly involved in or are affected by (and can affect) the ICT-focused water

Lead innovators  

Working partners

Implementing 
partners Innovation 

customers/users

Other stakeholders 

Non-
Implementing 

partners 

Fig. 3 Types of partners in ICT-WIPs
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innovation project. In project/programme management literature, these partners are
generally referred to as project stakeholders. In the context of ICTs and smart water
management, ITU [71] describes a stakeholder as “. . .any individual, group, or
institution that has a vested interest in smart water management by being potentially
directly or indirectly affected by its projects, activities, policies, and/or has the ability
to influence smart water management’s outcomes”. In the ICT-WIPs analysed in
this study, the non-implementing partners consist of a wide variety of actors span-
ning from customers and users of innovations4 to government organisations
(e.g. municipalities), water service providers, water regulatory agencies, ministries,
funders (including donors) and so on.

It has been observed that in developing countries, the promotion of ICTs in the
water sector is still heavily reliant on external (donor) funding mechanisms [10]. In
that regard, the ICT-focused water innovations analysed in this chapter are not an
exception: in each project, the main funding mechanism is through the VIA Water
seed capital fund. Thus, the donor organisation is generally described as a “funding
partner”. However, the VIA Water programme is not just a funding mechanism: it
functions as an incubator and is thus involved at different stages of the innovation
process, not in the implementation of the projects per se but through a variety of
support services (e.g. coaching, training and networking) provided to the partner-
ships. A detailed analysis of the innovation support services provided by VIA Water
can be found in Mvulirwenande et al. [66].

The analysis of the VIA Water ICT-WIPs shows that lead innovators tend to be
mainly enterprises, most of which are of small and medium size (or SMEs).5 These
are followed by non-governmental organisations (NGOs), consulting companies and
universities and research institutes. Figure 4 displays the relative importance of the
different lead innovators in the partnerships analysed in this chapter. Conventional
innovators – notably universities, research institutions and large companies – are not
well-represented in the VIA Water-supported partnerships. Our analysis further
shows that lead innovators are mostly foreign organisations or local organisations
established and owned by foreign entrepreneurs. For example, the three academic
and research institutions are all Dutch: Delft University of Technology, IHE Delft
Institute for Water Education and Deltares. Many of the enterprises (SMEs) and
NGOs also either come from the Netherlands (e.g. Royal HaskoningDHV, Mobile
Water Management, Orvion B.V, BoP Innovation Center) or are locally registered

4In this chapter, we distinguish between “end-users” (or simply users) and “customers” of an
innovation. The former term refers to a person or entity that uses an innovation (e.g. product), and
the latter refers to a person or entity that purchases it. Note that in some cases, the end-user and
customer of an innovation are the same (e.g. a water utility purchasing low-cost sensors and using
them to detect leakages in its distribution network), while they are different in other cases (e.g. an
NGO purchasing a mobile application for a selected number of citizens who then use the application
to share data and information about water issues in their community).
5Small and medium enterprises (SME) – the European Union defines these as enterprises employing
fewer than 250 persons and have either an annual turnover not exceeding EUR 50 million or an
annual balance sheet total not exceeding EUR 43 million.
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companies that were established by Dutch entrepreneurs (e.g. Maji Milele Ltd,
Upande Ltd). The few lead innovating organisations that are African-owned were
initiated by tech entrepreneurs from different backgrounds, spanning from African
Diaspora returnees (e.g. Markets Mergers LTD) to locally trained techies
(e.g. Mobile Tech solutions) and consulting firms providing innovative technical
and social solutions to challenges facing many sectors, including water
(e.g. Caicedra consulting Mali, SkyFox Limited). Annex provides an overview of
lead innovators, their type of organisations and their country of origin.

In the context of VIA Water projects, the lead contract partners are not necessarily
the initiator of the innovation (idea); in some cases, they are chosen to lead the
partnership for pragmatic reasons. For instance, in the case of App service for faecal
sludge management (PULA) project in Mozambique, BoP Inc. is listed as lead
partner (along with WSUP who is actually the initiator) notably because of its
connection to the Netherlands.

These findings are not surprising though they are a reflection of the general
situation of innovation and entrepreneurship in Africa. According to some authors,
the most dynamic SMEs on this continent are mainly in the hands of non-Africans,
implying that the level of indigenous innovation and entrepreneurship (including in
the ICT domain) in general is still low [72, 73]. This is particularly true for the “tech”

industry in Africa which is still in its infancy.

5.2 Resources Exchange in VIA Water ICT-WIPs

As elaborated in the theoretical section of this chapter, (innovation) partnerships
between two or more organisations are in essence established to tap into the distinct
resources possessed by other organisations [29, 30]. In the VIA Water partnerships,
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Fig. 4 Importance of ICT innovators leading the VIA Water-supported partnerships (n ¼ 24)
(Source: authors)
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lead innovators generally decided to partner with organisations who they thought
would bring resources that complement their own. We discuss below the immaterial
and material resources exchanged in the examined partnerships as well as the
mechanisms used.

5.2.1 Exchange of Immaterial Resources

The immaterial resources mostly exchanged in the ICT-WIPs analysed in this study
appear to be knowledge. In the first place, those who contribute knowledge resources
are the implementing partners. For example, many of the working partners have
joined the partnerships either as suppliers of ICT knowledge (embedded in specific
technologies) or as providers of expert knowledge that is not possessed by the lead
innovator. To illustrate, in the Flash flood forecasting application project in Ghana,
Royal HaskoningDHV – the Dutch lead innovator – provided meteorological and
hydrological experts to develop the application (including staff from its local Ghana
office). Whereas Infoplaza – one of the working partners – provided meteorological
data (rainfall data) for the validation of the system and set up an App service
(i.e. sms/smartphone) that integrates meteorological and hydrological forecasts and
provides effective warnings to the local people. Nelen and Schuurmans – another
working partner – brought to the partnership the expertise to setup the 3Di hydro-
logical model that is able to predict flash floods based upon the input of rainfall
forecasts. In the Water quality monitoring with a DNA-based field device project in
Mozambique, Orvion B.V – the lead innovator – brings to the partnership the
expertise to characterise and quantify micro-organisms in water using innovative
DNA-techniques, while WE Consult – the working partner – contributes its expertise
in water quality measuring and sampling and knowledge of the local context.

Different mechanisms are used by implementing partners to exchange knowl-
edge. These mechanisms include the creation of structures such as joint project
implementation teams through which regular meetings (e.g. weekly teleconference
meetings, kick off meetings) are organised, serving as channels for sharing both tacit
and explicit knowledge. Online collaborative systems are also used through which
participants from partnering organisations share information relevant to the innova-
tion they are developing and or promoting. Through these structural arrangements,
participants further continuously cocreate knowledge and use it during joint part-
nership activities. Most of this co-creation takes place through combination of the
participants’ respective personal/tacit knowledge [74]. As we explain in the next
section, the level of knowledge exchange is dependent on the extent to which
members of these teams relate to and trust each other. Task division among
partnering organisations is another important mechanism to exchange knowledge
resources in the partnerships. This is particularly the case when some partners are
best qualified (and or specialised) in producing some components of a particular
innovation and where cooperation through joint team activities would make little
sense. As argued by Batterink [75], task division improves the performance of
innovation partnerships, by allowing a more efficient use of the resources possessed
by partners.
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Knowledge that is used in the production of ICT-focused water innovations also
comes from non-implementing partners. The reports consulted and the interviews
conducted in this study showed that the knowledge possessed by these partners was
accessed through different mechanisms and at different degrees. Some of the
innovators obtained knowledge from potential customers and end-users of their
innovations by actively engaging them in some stages of the innovation process.
For example, in the App service for faecal sludge management (PULA) project in
Mozambique, the innovators applied a “user-centred design” approach. This itera-
tive design approach helped to understand the customers’6 needs and requirements
and to develop a prototype that considered these realities. The customers were
involved in the design process through a mixture of methods, including surveys
and interviews as well as brainstorming workshops. Through these consultation
processes, the innovators collected data and information about several aspects:
features needed in the application, level of complexity desired, how much potential
customers currently pay for similar services, their willingness to pay for and interest
in the innovation and so on.

Other strategies used in the ICT-WIPs to access the knowledge possessed by
non-implementing partners include involvement (of these partners) as members of
project steering committees, ad hoc consultations to seek their expert advice on some
aspects of the innovation and invitations to attend project events and activities. For
instance, in the Self-Billing and payment of water bills project in Ghana, a steering
committee was formed under the auspices of the Water Directorate of the Ministry of
Water Resources, Works and Housing and headed by the Director for Water. The
committee is responsible for strategic oversight and provides recommendations at
each stage of the project. Such a platform offers an opportunity for committee
members to contribute knowledge that can be used in the innovation process. In
the case of Chezo serious gaming project in Kenya, it was reported that a few
stakeholders and water experts were invited to the project kick-off event which
aimed, among other things, to communicate the innovation idea to them and have an
exchange on how they could best make use of (computer-based) serious games.
Some of the stakeholders also attended the training on serious gaming.

All in all, by engaging with relevant stakeholders, the innovators were able,
among other things, to acquire necessary knowledge for their innovation processes
and to easily make a case (and secure strategic support) for their ICT innovations in
water management.

6The potential customers of this application are of two categories: (1) vacuum tankers and small-
scale service providers providing services to low income consumers, and (2) municipalities,
utilities, regulators and financing institutions who need faecal sludge management-related data to
improve regulation of services.
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5.2.2 Exchange of Material Resources

The study results show that there is exchange of material resources in the VIA
Water-supported partnerships. Material resources exchanged in the ICT-WIPs by
partnering organisations include the provision of ICTs themselves, licence fees and
other costs charged. For example, in the partnership between Delft University
of Technology, Severe Weather Consult and TAHMO7 to implement the Storm
forecasts for Musanze in Rwanda – TAHMO covers the costs of weather stations as
resource contribution to the project. In other partnerships, companies contributed
office space (and associated equipment and services) to host the projects, access to
already existing technologies developed by one partnering organisations and so
on. For instance, in the TAP21 Purified Water distribution in the twenty-first
century in Kenya, Akvo (one of the partners) availed its FLOW8 technology to
the partnership – FLOW is supposed to be integrated with the “Susteq” electronic
payment system to collect real-time data. In many cases, the implementing partners
contributed financial resources – although a big portion of the required budget to
implement the projects is provided by VIA Water.

It is important to emphasise the use of networks (of partner organisations) as a
mechanism to exchange material and immaterial resources in the partnerships
analysed in this study [58, 62]. Our study results show that, in many of the cases,
partners’ networks enabled access to information and other resources through
personal referrals, for instance; lead innovators decided to partner with specific
organisations because they wanted to make use of their strong network of relation-
ships in the local operating environment. This is notably the case in the partnerships
where the lead innovator is a foreign organisation with limited local footing. In the
App service for faecal sludge management (PULA) project in Mozambique, the BoP
Innovation Center teamed up with Water & Sanitation for the Urban Poor (WSUP)
partly because the latter could offer its strong relationships with public and private
actors responsible for faecal sludge management in targeted cities in Mozambique,
while the former could offer its connections in the Netherlands. In a similar vein, in
the GARV smart public toilets in Ghana, SnapEX Overseas partnered with M4
Group (a Ghanaian company) to benefit from its strong network. The M4 Group
supposedly provides sales and distribution support for scaling up of GARV Toilets –

notably by helping SnapEX Overseas to acquire required government approvals,
land for toilets construction and access to corporate partnerships. SnapEX Overseas
also partners in this project with IRC Ghana who provides support pro bono through
its network of partners.

Our research found that provision of access to networks (e.g. potential business
partners and customers) is a core activity of the VIA Water programme and that
this occurs through a variety of mechanisms. The programme has established an

7TAHMO (Trans-African Hydro-Meteorological Observatory)
8FLOW is an open-source mapping software used for data collection and monitoring of the
functionality of water access points.
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“online learning community” which aims at connecting not only VIA Water project
owners among themselves but also different other target groups with an interest in
urban water issues in Africa. These groups include (young) water professionals,
experts working with NGOs, universities, knowledge institutes, the business sector
and governments. The representatives of the ICT-WIPs interviewed in this study
acknowledged that they have made useful connections with or through community
members. The exchange of networks and connections also occurs during the phys-
ical events organised by VIA Water in the target countries (e.g. skills sharing
seminars organised every year, learning tours, knowledge cafés). These face-to-
face encounters increase trust among participants and allow them to eventually
exchange useful connections. Finally, the programme supports project owners to
pitch their innovations at national and international events (e.g. international con-
ferences or bilateral meetings between the Netherlands and the target countries),
which provides ICT-WIPs with opportunities to connect with potential collaborators.

5.3 Governance Mechanisms of VIA Water WIPs

5.3.1 Structural Governance Mechanisms

This study identified different structural elements that are used to effectively manage
the VIA Water ICT-WIPs. To start with, each lead innovator ought to sign a contract
with VIA Water in which funding conditions are described. Besides, in the project
proposals submitted to VIA Water by lead innovators, there is always mention of
partnering organisations – with their tasks and responsibilities described. In many
cases, the submitting lead innovator must provide further proofs that the partners
mentioned in the proposal have actually agreed to be involved in the project. The
proofs include here copies of memoranda of understanding (MoU) and support
letters from partnering organisations. All these documents spell out what is to be
provided by each partner (and by which means) and sometimes describe how
innovation benefits will be shared – they serve as structural governance mechanisms.
Contracts between the lead innovator and working partners are also used but only in
a few partnerships. For example, in the case of eSOS: efficient and intelligent toilets
project in Kenya, a clear division of tasks is made – based on the specialisation area
of the partners. Manufacturing of specific electronic parts unique to this toilet and
software development are carried out by SYSTECH.ba, design responsibility was
given to Flex Design, whereas the implementation and testing are led by IHE Delft
with support of Sanergy. IHE Delft – the lead innovator – signed a separate contract
with each of the three partners. The use of joint project steering committees was
observed in 7 ICT-WIPs analysed in this study. These committees are expected to
meet periodically and are responsible for guiding and overseeing the execution of the
partnership. They are also responsible for advising the respective project teams in all
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matters of the innovation project and give comments on the project outline, progress
and outputs where appropriate.

5.3.2 Relational Governance Mechanisms

The findings of our study suggest that – in addition to structural governance
mechanisms – the VIA Water ICT-WIPs rely on trust in several regards. Some of
the reasons described in the partnerships’ documents (notably project proposals) on
why involved organisations decided to team up illustrate the importance of trust as a
governance mechanism in these partnerships. The reasons include previous cooper-
ation in other contexts, belief in the positive intentions of the partners about solving
targeted water pressing needs, shared beliefs in the potential innovations being
developed, clarity of incentives to partners to implement the projects. For example,
the fact that some of the VIA Water ICT-WIPs involved organisations who had
worked together in the past implies that they got the opportunity to learn about each
other’s honesty and ability to comply with the promises and agreements they make.
The partnerships were based on already existing relational trust. This could explain
to some extent why some partners in such partnerships did not even bother about
signing binding cooperation agreements – they believed that their counterparts
would deliver on their duties as agreed informally. However, as described in Sect.
5.4, not every partner came up to expectations. The fact that many ICT-WIPs give
importance to relational governance could also be associated with the national
culture of the countries where partnership members come from. For example, our
analysis showed that many of the lead innovators come from the Netherlands
(Annex); and, with its low scores on Hofstede’s [63] “power distance” and “uncer-
tainty avoidance” cultural dimensions,9 the Netherlands is known to be a high trust
and less bureaucratic country. These cultural characteristics imply that Dutch orga-
nisations involved in partnerships would generally prefer relational governance
mechanisms or less constraining structural mechanisms (e.g. simple MoUs instead
of legally binding contracts).

However, there are many other ICT-WIPs that were created just to respond to the
VIA Water funding opportunity, i.e. partnerships in which members had not worked
together previously. In these cases, the level of trust needed to effectively execute the
partnerships needed to be cultivated throughout the implementation of the partner-
ships. The mechanisms to establish and maintain trust that were observed in the
ICT-WIPs include recognition of the importance of other partners’ contributions
(e.g. by assigning specialised tasks and consulting them on matters that are subject to
their expertise), openness and transparent communication (e.g. use of drop box and
other online information systems shared by all team members throughout the
project) and collaborative decision-making (e.g. through joint committees).

9On these two dimensions, the Netherlands has the scores (out of 100) of 38 and 53, respectively.
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5.4 Some Challenges for the VIA Water ICT-WIPs

Our study found that in spite of the structural and relational governance mechanisms
discussed above, some of the VIA Water ICT-WIPs still experience challenges. It
should be indicated that for some of the partnerships, not much information is
available yet to judge their performance, be it in terms of achieving partnership
objectives or the functioning of the partnership itself. The challenges discussed in
this section were identified in those partnerships that are far advanced in the
implementation of the pilot stage of their innovation processes or have just com-
pleted it. The challenges fall under the following four categories:

– Low levels of partner commitment: in some of the analysed partnerships (e.g. in
Kenya), this issue resulted in problems of poor delivery of expected contributions
from partnering organisations – in at least one partnership, this led to early
termination of the cooperation. The reasons cited for poor delivery include long
delays in providing expected resources, lack of prioritisation of partnership
activities by some partners and weak communication between partners. These
findings suggest that the partners who failed to deliver did not give adequate
importance to the partnership. Yet, research has shown that the strategic impor-
tance of a partnership for a company to achieve its goals determines what that
company can invest in the partnership (e.g. number of staff a company assign to
the partnership, amount of resources dedicated to the partnership) [76].

– Difficult transfer of tacit knowledge: challenges related to knowledge exchange
(and transfer) were reported in one partnership in Ghana. In this partnership,
translation of the knowledge of experts into a digital manual that could be used by
the operators with no experience at all proved to be difficult. Not surprising
though, because a big portion of the knowledge possessed by water sector experts
is tacit in nature (i.e. personal, context-dependant and based on practice and
experience in nature) and thus very difficult to formalise and communicate. The
best mechanism to transfer tacit knowledge to others is through sharing mutual
experiences and through active participation in real-time and face-to-face inter-
actions [74, 77].

– Asymmetries in resource exchange: in one partnership in Ghana, the lead inno-
vator faced the challenge to access the data and information (e.g. financial
reports) possessed by a working partner, despite of an existing MoU. This
could suggest that there were concerns about confidentiality and the need for an
agreement along these lines. However, in other cases, the failure to access a
partner’s data/knowledge base could result from issues to do with the partner
organisation’s management style (e.g. a hierarchical structure, rigid procedures
about sharing company data and information), which then needs to be understood
before starting the partnership. In this regard, the lead partner in this partnership
further reported that at the initial stages of the project, they focused more on
involving top managers of the working partner. However, it proved difficult to
work with them because they were always busy with other priorities and often out
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of the country. To correct this, the lead innovator had to broaden his focus to
include other key staff members of the working partner who made the processes
smoother and quicker than before. This experience suggests that lead innovators
should target not just top managers of their potential partners. Instead, they
should aim to create a multilayered network in their partner organisations so as
to lower the risks that the partnership activities will be disrupted should a key
contact be reassigned or leave the organisation. In other partnerships, the inter-
viewees reported cases of partners who did not contribute resources in expected
quantities and qualities – e.g. supply of poorly performing technology,
secondment of low calibre staff to joint innovation project teams.

– Ambiguity of partnership objectives: this challenge was reported in one partner-
ship in Ghana. In an interview with one partner, it was disclosed that lack of
enough consultation among partners led to an ICT application with a lot of
problems (as it looks now). The final project report states that the project was
supposed to develop a tool that enables citizens to become more flood resilient,
which the project succeeded to do. But this report further suggests that there were
clarity problems among the partners, not only of partnership objectives but also of
expected contributions (lack of understanding about who was expected to bring
what to the partnership), which led to poor cooperation.

6 Discussion

In the context of globalised and competitive world, organisations increasingly
innovate in partnership with others (and with relevant stakeholders such as cus-
tomers/users) in order to bridge their resource gaps and thus produce cost-effective
and timely innovations. Drawing on evidence from the VIA Water-supported
ICT-focused water innovation projects, the explorative research reported in this
chapter sought to generate insights into how to best foster smart water systems in
developing countries through innovation partnerships. We did this by using the
lenses of innovation theories, notably open innovation [24] and innovation systems
[35] theories, and governance perspectives [43, 44]. The analysis was based on
24 ICT-focused water innovation partnerships (ICT-WIPs) developed and
implemented in seven African countries (Kenya, Ghana, Rwanda, Mozambique,
Benin, Senegal and Mali). The analysis generated several insights that could inform
and guide efforts aimed to form and execute successful innovation partnerships for
smart water management. We discuss these below.

The study results show that of the 25 ICT-focused water innovation projects
supported by VIA Water, 24 involve at least 1 partner. These were the focus of this
study. The partnerships analysed generally distinguish between two categories of
partners – implementing partners and non-implementing partners (or stakeholders).
The major motivation for the partnering organisations appeared to be the search
for complementary resources between them. This finding is consistent with the
assumptions made in the open innovation (and resource-based view) literature
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about why organisations are forced to team up with others in their innovation
endeavours [24, 78]. The resources exchanged spanned from technologies and
other forms of material resources, expert knowledge in specific areas and informa-
tion related to the targeted markets. The importance of cooperation with suppliers of
technologies (e.g. in the cases of the eSOS: efficient and intelligent toilets project in
Kenya and the Storm forecasts for Musanze project in Rwanda) and with clients of
innovations (such as in the case of the Reducing water loss by improved data systems
project in Kenya in which Upande Ltd partners with water utilities) has been studied
in other contexts [79, 80]. The exchange of resources in the ICT-WIPs takes place
through channels such as joint project teams (i.e. bringing together staff from
partnering organisations) and division of labour among partnership members. In
line with knowledge management theories, the meetings and other project events
organised by such joint teams allow partnership members to share explicit knowl-
edge (e.g. through information exchange) as well as tacit knowledge (e.g. through
human resource exchange) [74, 77].

While cooperation with suppliers generally aims at complementing research and
development (R&D)-related resources, partnering with customers and/or end-users
provides access to relevant information and knowledge about market aspects such as
customer preferences and prices they can afford and the market size – all of which
reduces market uncertainties [81, 82]. The results in this study showed that conven-
tional innovators such as universities and research institutions are not well
represented in the partnerships. This finding is surprising though! Because the
VIA Water programme supports water innovations that have just come out of the
research phase and require a piloting period before scale up [15], one would expect
knowledge institutes to be involved in such early stage innovations as they embody
the related knowledge. Yet we also know that, traditionally, alliances with the
aforementioned institutions are crafted when innovating companies need sophisti-
cated and intensive R&D infrastructure and knowledge [83].

The innovation partnerships analysed in this study appear to also be motivated
by the objective to reduce risks or costs associated with the development and
implementation of their innovations. Although the ICT-focused water innovations
supported by VIA Water are relatively small projects, the fact that most of them are
essentially at the pilot stage implies that they involve huge risks and uncertainties
which can be reduced through partnerships. The resources required to implement the
pilots are not that huge, and they are in big part covered through the VIA Water seed
capital fund; thus, the cost burden at the moment is relatively not heavy as the
partnerships are not obliged to return the seed money in case of failure (or lack of
innovation uptake). However, cost and risk reduction concerns will definitely
increase when the partnerships start large-scale implementation of their innovation
projects. This is the innovation stage that usually requires colossal amounts of
money (generally acquired through bank loans or Venture capitalists) and exposes
innovators to serious risks.

The fact that the partnerships acknowledge the importance of (and involve)
stakeholders in their water innovation processes is in line with the literature on
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stakeholder engagement in the water sector. Wehn et al. [84] argue that when
conceived as a social learning process, stakeholder engagement can lead to shared
understanding and concerted actions to improve water governance. The value of
stakeholder engagement in fostering smart water systems is further emphasised in
the International Telecommunication Union’s report on ICTs and smart water
management [71]. By involving stakeholders (the non-implementing partners), the
VIA Water-supported partnerships are expected to be able to not only secure
acceptance and ownership of their ICT-focused water innovations but also to have
access to resources such as data and information possessed by these stakeholders
which could only be acquired through cooperation with them. Partnering with
relevant stakeholders in ICT-WIPs is finally consistent with insights from the
innovation systems literature: notably that innovation is (and should be conceived
as) resulting from complex interactions among various actors and institutions who
both affect and are affected by the innovation process [35].

The two types of governance mechanisms – structural and relational – were found
to be used concurrently in the partnerships. This finding does not support many of
the previous studies which emphasised that relational governance is often preferred
in innovation alliances and or networks due to its assumed advantages (i.e. flexibil-
ity) as compared to structural governance which is criticised for being costly and
rigid [52–54]. In contrast, the finding here is consistent with some studies which
underscore the importance of combining the two categories of governance mecha-
nisms [46, 85]. In a study on 18 innovation networks in the Dutch agri-food sector,
Tepic et al. [44] demonstrated the complementarity of both governance mechanisms.
They conclude, among other things, that structural governance increases clarity of
partnerships, while relational governance helps prevent attrition in highly uncertain
conditions, especially in newly established innovation networks with limited previ-
ous cooperation. Similarly, Garbade et al. [48] in their analysis of 94 innovation
alliances (in the Netherlands, Belgium, Germany and Austria) establish that struc-
tural agreements play a key role in setting up a platform for trust on which relational
governance can strive.

Finally, this study has established that some of the VIA Water ICT-WIPs still
experienced problems in spite of the governance mechanisms deployed. This sug-
gests that there is still room for improvement on the mechanisms selected by the
partnerships. We observed, for example, that the structural governance mechanisms
that are mostly used include agreements such as MoUs and reference letters/endorse-
ment letters. Although such documents are useful to make partnership obligations
and rights clearer and, as such, to lower uncertainties to some extent, it is important
to highlight that they are not legally enforceable agreements. They are just used by
partnering organisations to express their willingness to participate, indicating an
intended common line of action, and they are only settled internally. Agreements
that imply a legal commitment are however extremely important to handle some of
the key conflicts that might arise from the ICT-based water innovation partnerships.
Appropriability of innovation outputs and distribution of innovation revenues is one
of the areas where such agreements are needed [86].
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For many of the partnerships analysed in this study, these issues do not seem to be
a priority yet. In our discussions with some of these partnerships, they argued that
their innovations are not “profit-based”, implying that once established they would
be in the public domain. This was particularly the case when innovation partners
considered themselves to be social enterprises. However, in other partnerships, lead
innovators (e.g. Upande Ltd in Kenya) were thinking of securing intellectual prop-
erty rights (IPR) for their innovation – although many were actually ignorant of how
the acquisition of IPR works and how they should proceed. Thus, they had not
anticipated any contractual arrangement to answer the key question often raised in
open innovations projects, namely, who of the partnering organisations owns the
property right for the innovation being developed [87]. Legally binding agreements
are equally important for managing potential risks. We argue that when the VIA
Water ICT-WIPs will start upscaling their innovations, the risks incurred will be
extremely high – which justifies the design of risk-related agreements. Such agree-
ments are useful notably to handle situations as when one partner goes bankrupt and
is no longer able to deliver what he promised or decides to terminate the cooperation
early in the execution of the partnership. Upfront agreements about all these issues
will be a must for ICT-WIPs that are “for profit”.

7 Conclusions

In this section, we consider the major lessons that can be extracted from the
explorative analysis conducted in this study. On the one hand, we reflect on the
potential of innovation partnerships as an approach to boost the smart water systems
agenda in the context of developing countries. On the other, we discuss the practical
implications of the study results and formulate some recommendations.

7.1 Innovation Partnerships and Smart Water Systems
in Developing Countries

The results of this study reinforce the argument made in the literature that smart
water systems can be effectively promoted through a partnership approach, based on
open innovation [7, 10, 14]. This is particularly true in the developing countries
context where the capabilities to innovate are far less developed. As exemplified by
the 24 ICT-focused water innovation projects analysed in this study, innovation
partnerships can play an important role in enhancing capabilities of developing
countries to implement the smart water systems agenda. To start with, in many of
these countries, the adoption of smart water systems approach is slowed down by a
lack of awareness and consciousness about the positive impact these systems can
have if implemented on a large scale. This study has shown that ICT-WIPs allow a
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variety of relevant stakeholders in the water sector (such as municipalities, minis-
tries, large utilities and regulatory agencies) to work together and get sensitised
about the potential of smart water systems. Thus, these processes can foster the
emergence of champions and advocates of smart water systems and, eventually, the
creation of a critical mass of people and institutions who could push the smart water
systems agenda beyond successful but isolated pilots. This push could eventually
result in the establishment of national and sectoral institutional frameworks that
promote and regulate the use of ICTs in the management of water systems.

The ICT-WIPs further represent a potentially transformational framework for
promoting smart water systems in developing countries. The results of this study
suggest that genuine partnerships can trigger a departure from the old-fashioned
hierarchical model of North-South cooperation in which resources (financial, tech-
nology, knowledge, etc.) flow from the North to the South. Although most of the
lead innovators in the analysed partnerships come from Western countries, our
interviews suggest that the partners have a general feeling of being mutually and
equally accountable for the innovation being developed and/or promoted. The
innovation partnership approach indeed fosters the mindset that any partner –

irrespective of their country affiliation – can be in the driver’s seat (e.g. being the
lead partner) in the promotion of smart water systems.

In the same way, the innovation partnership approach promotes the culture of
mutual learning, thus allowing partners to strengthen each other’s innovation com-
petences relating to smart water systems in developing countries. This is particularly
true when – as in the case of the ICT-WIPs analysed in this study – some partners
come from foreign countries and thus need the knowledge and experience of local
partners (e.g. on problems facing water systems, existing solutions and their weak-
nesses, possible local risks). The ICT-WIPs analysed in this study involved various
types of mechanisms that foster a culture of mutual learning. Most of the partner-
ships adopted a model of decision-making that was collaborative and supported by
open dialogue. Mechanisms such as regular joint planning and review events (either
physically of via Skype calls) and joint committees enabled information and knowl-
edge sharing among partnership members. In particular, through such mechanisms
domestic organisations operating in local environments could contribute their local
knowledge which is critical for developing relevant ICT solutions for water
management.

Finally, the nature of the ICT-focused water innovations analysed in this study
leads to the insight that fostering smart water systems in developing countries
requires a “rethink” of not only the technologies themselves but also the business
models around them. In other words, what is needed is not just ICTs but the
development of ICTs that fit the peculiar problems (technological, financial, social,
etc.) of developing countries. For instance, it is well known that weak ICT infra-
structure (e.g. low Internet bandwidth) is one of the key barriers for implementing
smart water systems in developing countries. There are also issues regarding afford-
ability of mainstream ICT solutions for water management, which explains why the
implementation of smart water systems in many developing countries often relies
on external (and unsustainable) donor funding [10]. This implies that the ICTs
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developed and used in developed countries are not necessarily appropriate for
developing countries. Thus, in line with frugal innovation literature [88, 89], we
argue that ICT-focused water innovations needed in developing countries are those
that are easy to use, low-cost and robust enough to solve the complex problems
facing water systems in developing countries. One way to achieve the parallel
objectives of offering quality ICTs (for water) at an attractive cost in these countries
seems to be the use of innovation partnerships. As exemplified by the VIA Water
innovations analysed in this study, these ICTs can be codeveloped and/or
co-promoted by either domestic or foreign organisations (e.g. Upande’s low-cost
sensors, TAHMO low-cost weather stations). They could also be produced through
“polycentric innovation” [90] in which ICT multinational enterprises (such as IBM
and Google) and local organisations collaborate.

7.2 Practical Implications

This study has the following practical implications. First, the findings show that
ICT-focused water innovation partnerships are aimed at exchanging knowledge
resources and that exchanging tacit knowledge can be a difficult task. A practical
implication is that such partnerships should pay heed to the design of appropriate
mechanisms to exchange tacit knowledge. This can be done notably by setting up
strategies that enable an open flow of information among partnering organisations
and continuous co-creation and use of knowledge by the partners throughout the
entire life time of the partnership. Some of the strategies identified in the ICT-WIPs
analysed in this study include the establishment of joint innovation teams, division
of labour, human resource exchange and online collaborative systems.

Second, the study results showed that fruitful ICT-WIPs do not naively rely on
mutual trust, as evidenced by the partnership challenges described in Sect. 5.4
(e.g. low levels of partner commitment, asymmetries in resource exchange and
ambiguity of partnership objectives). This calls for a careful combination of struc-
tural and relational partnership governance mechanisms. Organisations partnering to
implement ICT-focused water innovation projects should acknowledge that formal
control and trust-based governance mechanisms reinforce each other in safeguarding
the exchange of resources in the partnerships. Thus, even when they have all good
reasons to trust in the ability of their partners to deliver on their promises, they
should strive to set up formalised agreements right from the start of the partnership.
Structural agreements should be envisioned in a variety of areas, spanning from
dispute resolution mechanisms to knowledge protection, decision-making proce-
dures, incentive systems, performance monitoring and evaluation, intellectual prop-
erty rights, appropriability of innovation results and sharing of innovation revenues
[62].

Third, the study confirmed the increasing recognition that ICT-focused water
innovations cannot be implemented in a vacuum. Designing and executing effective
partnerships for smart water systems requires, therefore, that partners implementing
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ICT-focused water innovation projects fully recognise the importance of genuine
engagement of non-implementing partners. Only then can they learn from (and with)
them about the nature of the problems faced in water management in particular
contexts (or countries) and thus provide appropriate solutions to those problems.

Fourth, the results of this study suggest that effective ICT-WIPs rely on the
calibre of partnering organisations, i.e. their capability to contribute what they
promised (in expected quantities and qualities). This implies that partner selection
is a critical stage in the partnership formation process; it should be carefully
conducted in order to determine and choose partners who can really add value to
the partnership. With regard to partner selection criteria, Geringer [91] proposes two
categories: task-related and partner-related criteria. The former concerns typical and
distinct resources that a prospective partner would bring to the partnership – to
bridge the resource gaps of other partners – given the requirements of the innovation
project. The latter category refers to criteria pertaining to the ability of potential
partners to efficiently and effectively work together in a partnership. They include
prior experience of the partners with partnerships, trust in each other’s capability to
deliver, market familiarity and so on. One could also include strategic criteria such as
the partners’ convergent expectations for starting the innovation project, the possi-
bility for diversification and future business and the likelihood to share investments
costs [91–93].

Finally, this study showed the instrumental role of VIA Water in facilitating the
creation of many of the ICT-WIPs analysed. A practical implication from this
finding is that innovating organisations who intend to team up with others should
make use of innovation brokers or like-minded entities. Innovation brokers help to
identify reliable partners and to fully understand local risks and how to mitigate
them, among other things. They can also help understand and interpret local culture.
Another key implication linked to the issue of “culture interpretation” is that
organisations who want to partner with others for innovation purposes should
acknowledge that some partnership governance mechanisms might be more relevant
and effective in specific cultural contexts than in others. For example, trust-based
mechanisms cannot be relied upon to the same extent across all cultural settings.
Thus, in order to effectively manage partnerships, innovating organisations must
fully consider the societal norms and value systems of the countries where they
select partners.

7.3 Recommendations

7.3.1 Recommendations for Future Research

This study focused on ICT-WIPs that are still in early stages of implementation.
Subsequent research should investigate the performance of these partnerships at later
stages of the innovation process, notably during the scale-up stage. Future research
should also go beyond the sample limitation of our research, i.e. the fact that we
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focused on only the ICT-WIPs supported by the VIA Water programme in Africa.
We assume that the collection of data on ICT-WIPs crafted and executed in other
conditions (e.g. not funded by the same partner, other continents) might produce
additional insights. Finally, it would be highly relevant to undertake comparative
studies to find out how ICT-focused water innovations developed and implemented
through partnerships compare (in terms of success) with those that are not generated
through partnerships.

7.3.2 Recommendations for VIA Water

This study results showed that the analysed ICT-WIPs faced some challenges, which
can be partly explained by the limited use of legally enforceable partnership gover-
nance instruments (contractual agreements). It also appeared from this study that
VIA Water facilitated linkages between partners in the ICT-WIPs and requested lead
innovators to provide proof of commitment (to collaborate) by selected working
partners. In most cases, such proof consisted of MoUs and reference letters. It is
recommended that, for future partnerships, VIA Water – in its capacity as innovation
broker – takes this a step further and advises partners to formalise their partnerships.
Notably, in the same way that VIA Water itself signs a contract with lead innovators,
these should be encouraged (or perhaps requested) to sign formal contracts too with
their working partners (e.g. a partnership agreement). Arguably, this would increase
the level of commitment of the different partners to the partnership and the success-
ful generation of the envisaged innovation.
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Annex: Overview of Lead Innovators, Type of Organisations
They Are and Their Country of Origin

Lead innovator Type of organisation Country of origin

1. dloHaiti Enterprise (company) USA

2. Markets Merger Ltd Enterprise (start-up) Rwanda

3. Delft University of Technology University Dutch

4. SkyFox Ltd Enterprise (start-up) Ghana

5. Empower People Enterprise (start-up) Dutch

6. SnapEX Overseas Enterprise (company) Indian

7. Royal HaskoningDHV Consulting firm Dutch

8. HKV Consultants Consulting firm Dutch

(continued)
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Lead innovator Type of organisation Country of origin

9. Maji Milele Ltd Enterprise (start-up) Kenyan (owned by a Dutch
entrepreneur)

10. MobiTech Water Solutions Enterprise (start-up) Kenyan

11. Sanergy Kenya Ltd Enterprise (start-up) Kenyan (USA founded)

12. IHE Delft Foundation University Dutch

13. Upande Ltd Enterprise (start-up) Kenyan (owned by a “Dutch”

entrepreneur)

14. Mobile Water Management Enterprise (start-up) Dutch

15. Orvion B.V. Enterprise (company) Dutch

16. BoP Innovation Center Consultancy Dutch

17. Kaicedra-Consulting Enterprise (start-up) Mali

18. World Waternet Utility Branch with
NGO status

Dutch

19. Protos NGO Belgian

20. Niger River Basin Agency Intergovernmental Regional

21. Flood Tags Enterprise (company) Dutch

22. Benin Country Water
Partnership

NGO Benin

23. Water & Sanitation for the
Urban Poor

Not-for-profit company United Kingdom

24. Deltares Research Institute Dutch
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Abstract This chapter aims to describe the latest innovative approaches for inte-
grating heterogeneous observations from static social sensors within hydrological
and hydrodynamic modelling to improve flood prediction. The distinctive charac-
teristic of such sensors, with respect to the traditional ones, is their varying lifespan
and space-time coverage as well as their spatial distribution. The main part of the
chapter is dedicated to the optimal assimilation of heterogeneous intermittent data
within hydrological and hydraulic models. These approaches are designed to
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account for the intrinsic uncertainty contained into hydrological observations and
model structure, states and parameters. Two case studies, the Brue and Bacchiglione
catchments, are considered. Finally, the evaluation of the developed methods is
provided. This study demonstrates that networks of low-cost static and dynamic
social sensors can complement traditional networks of static physical sensors, for the
purpose of improving flood forecasting accuracy. This can be a potential application
of recent efforts to build citizen observatories of water, in which citizens not only can
play an active role in information capturing, evaluation and communication but also
can help improve models and increase flood resilience.

Keywords Crowdsourced observations, Data assimilation, Flood forecasting,
Hydraulic modelling, Hydrological modelling

1 Introduction

The impact of natural hazards on societies and economies has drastically increased in
the last years due to many natural and anthropogenic factors, including climate
change [1, 2]. For this reason, the demands for non-structural measures able to
accurately and timely forecast in real-time river water level to allow decision-makers
to take the most effective and timely decisions for reducing harm or loss have
significantly increased [3–5]. Among different types of water system models, hydro-
logical and hydrodynamic models are the most utilised ones in flood early warning
systems in river basins.

Unfortunately, deterministic predictions contain an intrinsic uncertainty due to
many sources of error that propagate through the model and therefore affect its
output [6]. In fact, uncertainty can be due to either the inherent stochastic nature and
variability of hydrological processes, i.e. aleatory uncertainty [7, 8], or to our
imperfect state of knowledge of the hydrological system and our limitedness to
model it, i.e. epistemic uncertainty [9–12]. Three main sources of uncertainty can be
identified [13] in hydrological and hydrodynamic modelling: (a) observation uncer-
tainty, which is the approximation in the observed hydrological variables used as
input or calibration data (e.g. rainfall, temperature and river discharge);
(b) parameter uncertainty, which is induced by imperfect model calibration; and
(c) model structural uncertainty, which is a result of the inability of models to
perfectly schematize the physical processes involved. Epistemic uncertainty can be
associated with the latest two sources of uncertainty previously mentioned due to
limited knowledge about the physical behaviour of the system.

A reliable characterisation and reduction of the uncertainties affecting hydrolog-
ical and hydrodynamic processes is an important scientific and operational challenge
[14–17]. Different approaches like the first-order reliability method [18], probabi-
listic Monte Carlo (MC) and fuzzy rule-based methods [19–21] can be used to assess
model uncertainty.
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Several research activities aimed to reduce such uncertainty in the flood
estimation, predictive uncertainty, have been carried out due to its importance to
the decision of issuing a flood warning [5, 22, 23]. Methods like the UNcertainty
Estimation based on Local Errors and Clustering (UNEEC, [24–26]), Generalised
Likelihood Uncertainty Estimation (GLUE, [27, 28]) and Machine Learning in
parameter Uncertainty Estimation (MLUE, [29, 30]) can be employed to assess
uncertainty in water system models and estimate predictive uncertainty (see,
e.g. [31, 32]). However, such tools are often not used in operational forecasting by
environmental agencies and river basin authorities, perhaps because of their belief
that uncertainty analysis cannot be incorporated into the decision-making process
and because uncertainty analysis is too subjective, among others [5, 11, 33].

In the last decades, model updating techniques for reducing predictive uncertainty
approaches have been increasingly studied and implemented in water-related appli-
cations. These approaches allow for changing model input, states, parameters or
output in response of new observations coming into the model in order to improve
the prediction accuracy and quantifying uncertainty [3, 14, 34]. In most of the cases,
model updating occurs only in form of data assimilation using information of
streamflow, soil moisture, etc. coming from static physical stations. Model updating
techniques are rarely implemented in operational forecasting due to the lack of
approaches to quantify the uncertainty in real-time observations from multiple
sources across a range of spatiotemporal scales and methods to integrate these new
information in an appropriate and transparent way. In this respect, in operational
practice it is preferred to correct the model inputs (in most of the cases), states, initial
conditions and parameters in an empirical and subjective way rather than apply
advanced (optimal) data assimilation techniques for improving hydrologic forecast
[35]. Welles et al. [36] and Liu et al. [34] pointed out how the need for implementing
reliable data assimilation methods in operational forecast is increasing in order to fill
the mentioned gap with the scientific world.

Traditionally, static physical sensors, such as pressure sensors, water level sen-
sors, and pluviometers, are commonly used by water authorities to calibrate, validate
and (in some cases) update physical models in real time. However, the main problem
of physical sensors is the proper maintenance which can be very expensive in case of
a vast network as well as the limited data that existing sparse monitoring networks
can provide to this end.

The continued technological advances have stimulated the spread of low-cost
sensors that has triggered crowdsourcing as a way to obtain observations of hydro-
logical variables in a more distributed way than the classic static physical sensors
[37]. The main advantage of using these types of sensors is that they can be used not
only by technicians, as is the case of traditional physical sensors, but also by regular
citizens. Recently, citizen science activities have been widely promoted in order to
allow citizens to participate in different aspects of environmental planning and
management. One of the most common activities to achieve such goal includes
involving citizens in data collection, or crowdsourcing (CS). In particular, observa-
tions of hydrological variables can generate additional knowledge, in relation to the
water cycle, and use such knowledge in decision-making [38, 39]. However, because
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of their relatively limited reliability, and random accuracy in time and space,
crowdsourced observations have not been widely integrated in hydrological and/or
hydraulic models for flood forecasting applications. Instead, they have generally
been used to validate model results against observations, in post-event analyses.
Different studies addressed the issue of assimilation of distributed observations in
distributed and semi-distributed hydrological models (e.g. [40–43]). Neither of the
previous studies considers the dynamic nature of data from heterogeneous sensors
which provide an intermittent signal in time and space. In fact, the information
coming from a specific sensor might be sent just once, occasionally or in time steps
that are non-consecutive, i.e. with intermittent observations having different
lifespans.

A number of studies have developed methods for using crowdsourced citizens-
based observations in water-related models [44–56]. In particular, crowdsourced
information are used for directly creating deterministic or probabilistic flood maps
[48], derive stream discharges and flow velocities fields [57] and flood extent [52]. In
alternative, crowdsourced data have been used for validating flood models
[44, 56]. A detailed review on the use of citizen observations for flood modelling
applications is provided in Assumpção et al. [58]. However, none of the previous
studies assessed the usefulness of citizen observations for improving flood pre-
dictions [39, 59]. The first attempts to study the effects of assimilating crowdsourced
citizen observations in hydrological and hydraulic models for improving flood
prediction in real-time applications are reported in Mazzoleni et al. [60–62] and
Mazzoleni [63]. Just recently, Mazzoleni et al. [64] proposed two innovative
approaches to assimilated qualitative flow data within hydrologic routing models.

In this chapter, we describe the proposed innovative methods to assimilate
heterogeneous intermittent observations, coming from social sensors, within hydro-
logical and hydrodynamic modelling to improve flood prediction. This research was
carried out under the framework of the European project WeSenseIt (https://www.
wesenseit.com/) [65].

2 Crowdsourced Observations

In this chapter, we consider two different types of sensors to measure hydrological
variables such as water level: static physical (StPh) and static social (StSc) sensors
(see Fig. 1). In addition, also dynamic social sensors may be used but are not
included in this chapter. An example of a static social sensor is a staff gauge located
in a strategic point of the river used by citizens to estimate water depth values using a
mobile phone app to send CS observations using the QR code as geographical
reference point. An example of dynamic sensor is a mobile app allowing any citizen
to send the information related to the distance between the water profile and the river
bank using a mobile app at random locations along the river. It might be in fact
difficult to estimate the water depth value without having any indication about river
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depth. In this case, the CS observations have higher degree of uncertainty due to the
indirect method used to estimate water depth value.

According to the nature of the sensor, uncertainty can be defined either as a
probability distribution (quantitative observation) or a fuzzy set (qualitative or semi-
qualitative observations).

During the last decades, probability theory has been applied in order to represent
epistemic or observational uncertainty in mathematical models. In particular, quan-
titative observations of physical variables can be expressed as a stochastic variable
with a given probability distribution which represents the likelihood of that variable
value to take on a given value. In most of the cases, stochastic variables are
represented using a normal distribution with assigned mean and standard deviation.
The higher is the standard deviation, the higher the uncertainty of that variable is.

Examples of qualitative information can be found in verbal or text messages
coming from social networks (Twitter, Facebook, etc.). Fuzzy logic emerged as a
more general form of logic that can handle the concept of possibilistic values or
partial truth. This approach has been used recently [64] as a qualitative modelling
methodology since it allows for an easier transition between human and computers
for decision-making (transition from fuzzy to numerical data), and it is able to handle
imprecise and uncertain information [66]. From a statistical point of view, a physical
variable can be associated to a deterministic value plus a given degree of uncertainty,
expressed as a pdf, or the second or third order moment. In fuzzy logic-based
approach, a physical variable value (e.g. precipitation) would belong to a specific
fuzzy set having given characteristic (e.g. low, medium, high precipitation).

3 Case Studies and Water-Related Models

Two different case studies having different hydrometeorological characteristics are
analysed in this book chapter. The case studies are the Brue catchment (UK) and the
Bacchiglione catchment (Italy). Different hydrological and hydraulic models are

Fig. 1 Proposed sensors classification with (a) static physical sensors (StPh), (b) static social
sensors (StSc), and (c) dynamic social sensors (DySc)
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implemented within each case study. In particular, a semi-distributed version of a
continuous Kalinin-Milyukov-Nash (KMN) cascade hydrological model is applied
on the Brue catchment, while a semi-distributed hydrological and hydraulic model
developed by the Alto Adriatico Water Authority is implemented in the
Bacchiglione catchment. In this study, synthetic flow observations derived from
observed and simulated quantitative streamflow are used. Synthetic data are used to
evaluate the potential of the proposed approaches as real qualitative observations
may be affected by different unpredictable errors.

3.1 Brue Catchment (UK)

The Brue catchment is located in Somerset, South West England, with a drainage
area of about 135 km2 and a time of concentration of 10 h at the catchment outlet,
Lovington. Hourly precipitation data are supplied by the British Atmospheric Data
Centre from the NERC Hydrological Radar Experiment Dataset (HYREX) project
[67, 68] and available at 49 automatic rain stations; average annual rainfall of
867 mm is measured in the period between 1961 and 1990. Discharge is measured
at the catchment outlet by one station at a 15 min time step resolution, having an
average value of 1.92 m3/s. For both precipitation and discharge data, a 3-year
complete data set, between 1994 and 1996, is available.

A semi-distributed hydrological model is used to assess the flood hydrograph at
the outlet section of the Brue catchment and to represent the spatial variability of the
CS flow observations. The Brue catchment is divided into 68 sub-catchments having
a small drainage area (on average around 2 km2) so that any observation at a random
location in a given sub-catchment would provide the same information content that
an observation at the outlet of same sub-catchment [60]. For each sub-catchment, a
conceptual lumped hydrological model, continuous Kalinin-Milyukov-Nash (KMN)
cascade, is implemented to estimate the outflow discharge [69]. The KMN model
considers a cascade of storage elements (or reservoirs), assuming that the relation
between stage, discharge and stored water volume is linear and that the water storage
xt is only a function of the outflow of the reach Qt [60]. Subsequently, the KMN is
represented as a dynamic state-space system to apply data assimilation techniques as
explained in the previous section. In the case of the linear systems, the discrete state-
space system can be represented as follows [69]:

xt ¼ Φxt�1 þ ΓIt þ wt ð1Þ
zt ¼ Hxt þ vt ð2Þ

where t is the time step, x is vector of the model states (stored water volume in m3),
Φ is the state-transition matrix (function of the model parameters n and k), Γ is the
input-transition matrix, H is the output matrix and I and z are the input (forcing) and
model output, while w and v are the system and measurements errors.
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Muskingum channel routing method [70] is used for flow propagation between
sub-catchments; for details see Mazzoleni et al. [60]. The semi-distributed model is
structured in such a way that the sub-catchments are sequentially connected and the
output of the upstream sub-catchments is used as input in the downstream ones (see
Fig. 2). More details about the model calibration are reported in Mazzoleni
et al. [60].

3.2 Bacchiglione Catchment (Italy)

The Bacchiglione River catchment is located in the north-east of Italy and tributary
of the River Brenta which flows into the Adriatic Sea at the south of the Venetian
Lagoon and at the north of the River Po delta. The considered area is the upstream
part of the Bacchiglione River, which has an overall area of about 400 km2, river
length of about 50 km, river width of 40 m and river slope of about 0.5% [71]. The
main urban area is Vicenza, located in the downstream part of the study area, where
recent floods were registered during the springs of 2010 and 2013. Within the
activities of the WeSenseIt project [72], one StPh sensor and ten StSc sensors
(staff gauges complemented by a QR code, as represented in Fig. 1) were installed
in the Bacchiglione River to measure water level (see Fig. 3). Hourly information
related to rainfall, temperature, wind direction and intensity, humidity, snow, solar
radiation and water level are available for the last 12 years.

In order to represent the distributed hydrological response of this catchment, a
semi-distributed model, in which the output of the hydrological model is used as
boundary conditions in the hydraulic model, has been implemented.

The hydrological response of the catchment is estimated using the hydrological
model developed by the Alto Adriatico Water Authority (AAWA) that considers the
routines for runoff generation, having precipitation as model forcing, and a simple
routing procedure. The processes related to runoff generation are modelled mathe-
matically by applying the water balance to a control volume, of soil depth, repre-
sentative of the active soil at the sub-catchment scale. The water content is estimated

Fig. 2 Considered model structures (MS) for the semi-distributed hydrological model
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as function of the precipitation, evapotranspiration, surface runoff, sub-surface
runoff and deep percolation. The propagation process in the river channel is repre-
sent using a distributed Muskingum-Cunge model discretized each 1,000 m. More
details about these models can be found in Mazzoleni et al. [62].

The calibration of the hydrological model parameters was performed by AAWA
using an adaptation of the “SCE-UA” algorithm [73], considering the time series of
precipitation from 2000 to 2010, in order to minimise the root mean square error
between observed and simulated values of water level at PA (Vicenza) gauged
station. For the Muskingum-Cunge model, the only parameter that is calibrated in
this chapter is the Manning coefficient n, used to estimate the water level along the
river. The semi-distributed hydrological-hydraulic model in the Bacchiglione catch-
ment is then validated considering the flood events that occurred in May 2013,
November 2014 and February 2016.

In order to apply data assimilation, both the hydrological and Muskingum models
are represented using the stochastic state-space form reported in the previous section.
In particular, for the Muskingum model, the approach proposed by Georgakakos
et al. [74] is used.

4 Model Updating Techniques

Operational forecast can be seen as combination of water models (e.g. hydrological
and hydrodynamic) and an updating module. In fact, in the last decades model
updating techniques have been intensively used within water system models
[75, 76], in order to reduce predictive uncertainty. The hydrological and
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Fig. 3 Structure of the semi-distributed model for the Bacchiglione catchment and location of the
static physical (StPh) and social (StSc) sensors
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hydrodynamic models utilise input variables, which are either measured or estimated
(e.g. areal precipitation, air temperature, potential evapotranspiration), into a set of
equations that contain state variables and parameters. Typically, the parameters
remain constant, while the state variables vary in time, even if there are different
examples of parameter updating approaches such as Moradkhani et al. [77, 78],
Salomon and Feyen [79] and Lü et al. [80]. The feedback process of assimilating the
new available information into the forecasting procedure is referred to as updating
[75] or DA [76].

The assimilation methods can be divided according to the variables modified
during the updating process. In the frequently cited WMO report [76], updating is
understood in a wide sense, and input, parameters, states and output updating
techniques are distinguished. Recently, Liu et al. [34] provided a detailed review
of the status, progresses, challenges and opportunities in advancing DA in opera-
tional hydrological forecasting. There are many data assimilation techniques that can
be used to integrate hydrological observations within water-related models. In this
chapter we will focus mainly on Kalman filter and ensemble Kalman filter.

4.1 Kalman Filter

Kalman filter (KF, [81]) is an approach which allows to optimally estimate the state
of a dynamic uncertain model as response of real-time (noisy) observations [3, 14,
77, 82–85]. KF update model states considering only the last available observation
allowing for a faster computation. However, KF is optimal only in the case of linear
dynamic systems. Kalman filter procedure can be divided in two steps: time update
equations, namely, forecast (background) equations, Eqs. (3) and (4),

x�t ¼ Φxþt�1 þ ΓIt þ wt ð3Þ
P�

t ¼ ΦPþ
t�1Φ

T þ St ð4Þ

and update (or analysis) Eqs. (5), (6) and (7):

Kt ¼ P�
t HT

HP�
t HT þ Rt

ð5Þ

xþt ¼ x�t þ Kt � zo
t � Hx�t

� � ð6Þ
Pþ

t ¼ I � KtHð ÞP�
t ð7Þ

where x is the nstate � 1 state matrix at time t and t�1, Kt is the nstates � nobs Kalman
gain matrix, P is the nstates � nstates error covariance matrix and z0 is the new
observation. The superscripts + and – indicate, respectively, the updated and back-
ground state values, and Φ and Γ represent the state-transition and input-transition

Exploring Assimilation of Crowdsourcing Observations into Flood Models 217



matrices, which change according to the model type and structure. The system and
measurement error wt is assumed to be normally distributed with zero mean and
covariance R. In the application considered in this chapter, the matrix R is time
dependent as the error in the measurement is assumed variable because of the
varying behaviour in time and space of the crowdsourcing observations.

A key issue in the implementation of the Kalman filter is the determination of
model errors. In fact, an overestimation of model errors can reduce the confidence in
the model bringing the KF closer to the observations and vice versa [86]. In this
study, the modified version of KF, which accounts for the intermittency of
crowdsourced observations in between two model time steps, proposed in Mazzoleni
et al. [62] is used.

4.2 Ensemble Kalman Filter

Ensemble Kalman filter [87–90] is a widely used data assimilation method for
non-linear dynamic model. The main idea of the EnKF is to represent the forecasted
pdf estimate with a set of random samples and estimate the updated probability
density function (pdf) of the model states as a combination between data likelihood
and forecasted pdf of model states by means of a Bayesian update. In this way, the
evaluation of the model error covariance matrix is performed as proposed by
Evensen [87]:

P�
t ¼ 1

Nens � 1
EET ð8Þ

where Nens is the number of ensemble members and E is the ensemble anomaly [40]
for each ensemble member:

Et ¼ x�t, 1 � x, x�t, 2 � x, � � �, x�t, i � x, � � �, x�t,Nens
� x

� �
ð9Þ

where x is the ensemble mean. The update states and Kalman gain are calculated
using Eqs. (5) and (6). Because the EnKF performance is influenced by the spread of
the ensemble [91–93], it is important to properly perturb the system in a way to
obtain a reliable spread of the ensemble within a meaningful range [94]. For this
reason, in this study we used the approach proposed by Anderson [91] to perturb the
system and to evaluate the quality of the ensemble spread. More details are provided
in Mazzoleni [63].

In order to implement EnKF, an ensemble of model realisations is generated
perturbing the forcing data and the model parameters using a uniform distribution.
The observation error is assessed using the approach described in the section below.
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4.3 Synthetic Flow Observations

Synthetic flow observations are used because of the lack of distributed crowdsourced
observations at the time of this study within the considered case study [62]. Such
synthetic observations are generated by two different approaches for the two catch-
ments. On the one hand, for the Brue catchment, the approach used to generate the
synthetic values of river flow is very similar to the one used by Weerts and El Serafy
[90], in which the model forcing is perturbed by means of a time series normally
distributed with zero mean and given standard deviation.

On the other hand, for the Bacchiglione catchment, the observed time series of
precipitation are used as input for the hydrological models of the sub-catchments and
inter-catchments to generate synthetic discharges and then propagate them with the
hydraulic model down to the outlet point of the catchment. In this way, the synthetic
WL values at the outlet of the sub-catchments or inter-catchments and at each spatial
discretization of the six reaches of the Bacchiglione River are estimated and assumed
as observed variables in the assimilation process.

4.4 Estimation of the Observational Error

The correct estimation of the model and observational error is crucial for
implementing data assimilation methods. Few studies in the past have addressed
this issue (e.g. [95]), but further research is needed. For this reason, we adopted a
simplified approach to quantify observational errors. Here, the covariance matrix
R is assessed using the approach described in Weerts and El Serafy [90], Rakovec
et al. [43] and Mazzoleni [63]:

Rt ¼ αt ∙Qsynth
t

� �2 ð10Þ

where α is a variable related to the accuracy level (i.e. degree to which the measure-
ment is correct overall) of the flow measurement and Qsynth is the synthetic flow
observation. In the case of CS observations, accuracy levels vary temporally and
spatially.

Table 1 summarises the distribution of the coefficient α of the observational error
of Eq. (10). The distribution of the coefficient α does not pretend to be exhaustive in

Table 1 Assumed observational errors for the different types of sensors

Sensor type
Assumed accuracy
level Coefficient α

Temporal and spatial
variability

Static physical
(StPh)

High α ¼ 0.1 Fixed location
Constant in time

Static social (StSc) Medium α ¼ U(0.1,
0.3)

Fixed location
Intermittent arrival
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accounting for different inaccuracies of observations coming from physical and
social sensors and is subject for further research.

For static social sensors, α values are higher than for static physical sensors and
are considered to be a random stochastic variable uniformly distributed in time and
space. More details can be found in Mazzoleni et al. [61].

5 Assimilation of Flow Observations from Static
Heterogeneous Sensors

This section aims to explore the benefits of assimilating flow observations from a
network of static heterogeneous sensors in the case of synchronous (Sect. 5.1) or
asynchronous (Sect. 5.2) social observations, depending on the predictability of the
arrival time of the observations. In particular, we assume that social sensors provide
intermittent observations that can lie either in a specific model time step (synchro-
nous) or in between two model time steps (asynchronous). In addition, social sensors
may be distributed within the catchment or be located in a specific point.

5.1 Assimilation of Synchronous Observations

Here, we show the model performance after the assimilation of intermittent syn-
chronous observations, i.e. their arrival time matches the model time step, within the
semi-distributed hydrological models of the Brue catchment. We can divide this
section in two parts: first, the flow observations are assimilated from different social
sensors located within the catchment; second, social sensors are integrated with a
network of physical sensors to evaluate the added value of crowdsourced sensors in
the assimilation process. A straightforward and pragmatic method (based on EnKF)
is used to assimilate the intermittent observations into the hydrological model
updating the model states matrix only when observations are available, while
when there are no observations, it is assumed that the state covariance error does
not change at that time step [60, 96].

5.1.1 Assimilation of Flow Observations Only from Social Sensors

In the first part of this section, we considered MS1 and three different spatial
configurations (SC) of static social sensors within the catchments (called scenarios
SC1, SC2 and SC3). In particular, SC1 refers to social sensors located along the
main river channel, SC2 to sensors located on the upstream part of the main river
channel, while SC3 to sensors located close to the catchment outlet. Model results
obtaining assimilating flow observations from physical sensors are considered as
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benchmark in order to compare the assimilation performances using social sensors.
A main assumption of this study is that flow observations from social sensors are
accepted to be less accurate, with random observation error both in time and space,
than the ones from physical sensors.

The difference between the outflow hydrograph estimated assimilating physical
and social data (in the same location) is represented in Fig. 4. The different colours of
the hydrographs represent the different intermittency configurations of the social
sensors, i.e. the unpredictable arrival time of the social observation. The smaller the
value of difference, the smaller the sensitivity of the model to assimilation of
observations from social sensors. Two different flood events are analysed.

As expected, the assimilation performances change with the different locations of
social sensor within the catchment. Considering the flood event A, it can be seen that
model outputs are affected by changing from physical to social flow data mainly for
SC3. Physically, this can be due to the particular structure of the hydrological model.
In particular, the discharge differences in flood event B are smaller than in flood
event A due to the different performances of the model without assimilation. In fact,
for flood event B, additional real-time observations of discharge slightly improved
the model results since the model tends to better estimate the observed value of
discharge even without assimilation. It is worth noting that results do not seem to be
very sensitive to the intermittency scenarios (different colours of Fig. 4).
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Fig. 4 Differences between assimilation of synthetic physical and social flow data in terms of
outflow hydrographs under different intermittency configurations of the social sensors (different
colour lines) for MS1 (source [60])
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The results reported in Table 2 show a large difference in the NSE between
assimilations from physical and social sensors. Table 2 underlines that the best
model performances are not obtained when the assimilation of flow data is
performed using sensors located at the outlet section of the catchment but when
sensors are located along the main river channel, i.e. SC1 [60].

5.1.2 Assimilation of Flow Observations from Both Physical and Social
Sensors

As a matter of fact, the location of the social sensors should typically follow some
rules and be subjected to specific constraints. For example, existence of multiple
sensors in remote areas of the catchment is quite unlikely due to economical and
management reasons. For this reason, in the second part of this section, we assume a
realistic configuration of the social sensors closer to the main urbanised area within
the catchment (see Fig. 5). The network of social static sensors is integrated with the
optimal network of static physical sensors (α equal to 0.1) for MS1 and MS2,
respectively.

Different scenarios are introduced based on assumption on the intermittency and
availability of CS data and on the possible integration between uncertain CS data and
optimal/nonoptimal network of static physical sensors (see Table 3).

Table 2 NSE index values obtained assimilating streamflow observations from different spatial
configuration of physical and social sensors for MS1

Spatial configuration NoDA 1 2 3

Physical sensor 0.46 0.77 0.69 0.75

Social sensors 0.46 0.58 0.51 0.47

Fig. 5 Representation of distribution of static physical and social sensors along the Brue Basin for
MS1 and MS2, respectively [63]
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We demonstrate that assimilation of uncertain discharge observations measured
at seven staff gauges by social sensors could improve the model results, however,
still with the underestimation of the peak flow for scenarios 1 and 2 (see Fig. 6).
Assimilation of observations coming from trained volunteers in the time of the peak
flow (scenarios 3 and 4) showed a satisfactory improvement of the discharge

Table 3 Description of the different settings

Setting

Social sensors Physical sensors

Intermittent Daily timing Daily and peak timing Optimal Nonoptimal

1 – X – – –

2 X X – – –

3 – – X – –

4 X – X – –

5 – – – X –

6 – X – X –

7 X X – X –

8 – – X X –

9 X – X X –

10 – – – – X

11 – X – – X

12 X X – – X

13 – – X – X

14 X – X – X

40

30

20

10

0

Time (hours)

Observed
Scenario1
Scenario2
Scenario3
Scenario4

Observed
Scenario5
Scenario6
Scenario7
Scenario8
Scenario9

Observed
Scenario10
Scenario11
Scenario12
Scenario13
Scenario14

Observed
Scenario1
Scenario2
Scenario3
Scenario4

Observed
Scenario5
Scenario6
Scenario7
Scenario8
Scenario9

Observed
Scenario10
Scenario11
Scenario12
Scenario13
Scenario14

D
is

ch
ar

ge
 (

m
3
/s

)

40

30

20

10

0

D
is

ch
ar

ge
 (

m
3
/s

)

20 40 60 80 100 120

Time (hours)
20 40 60 80 100 120

40

30

20

10

0

D
is

ch
ar

ge
 (

m
3
/s

)

D
is

ch
ar

ge
 (

m
3
/s

)

Time (hours)
20 40 60 80 100 120

40

30

20

10

0

Time (hours)
20 40 60 80 100 120

40

30

20

10

0

Time (hours)

MODEL STRUCTURE 1

a b c

d e f

MODEL STRUCTURE 2

D
is

ch
ar

ge
 (

m
3
/s

)

20 40 60 80 100 120

40

30

20

10

0

Time (hours)

D
is

ch
ar

ge
 (

m
3
/s

)

20 40 60 80 100 120

Fig. 6 Outflow hydrographs resulting from the assimilation of physical, social and intermittent
observations in the case of realistic scenarios (from a to f) of spatial and temporal distribution of
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hydrograph (higher for the model structure 1 than for the structure 2). Intermittent
observations do not improve the model results in the same way that social observa-
tions coming continuously in time do.

Figure 6b confirms that similar improvements for the scenario 3 are achieved
assimilating observations coming from the optimally located static sensors running
continuously in time (scenario 5). In addition, a combined assimilation of intermit-
tent observations (during daylight time) and static observations from optimal and
nonoptimal network of static sensors tends to slightly improve the model output.

Figure 6 demonstrates that considering this type of hydrological model in this
particular basin, in the case of an inappropriate distribution of static physical sensors
within the basin (scenario 10), the model performances can be improved. However,
there is an evident limitation of the model in providing biased hydrographs (espe-
cially for MS2), underestimated when compared to the observed one. Biased models
can affect the DA results [34].

5.2 Assimilation of Asynchronous Observations

In the previous analysis, social data are provided at the same time of the model time
step. However, in case of CS observations, the arrival moment might have lower
frequency than the model time step (asynchronous observations), as reported in
Mazzoleni et al. [62]. Various experimental scenarios representing different config-
urations of arrival frequency, number and accuracy of the flow observations are
reported in Fig. 7. In order to remove the random behaviour related to the irregular
arrival frequency and observation accuracy, different model runs (100 in this case)
are carried out, assuming different random values of arrival and accuracy (coefficient
α in Eq.10) during each model run, for a given number of observations and lead time.
The NSE value is estimated for each model run, so μ(NSE) represents the mean of
the different values of NSE.

5.2.1 Assimilation of Flow Observations Only from Social Sensors

A lumped hydrological model based on the KMN model is applied to the Brue
catchment in order to assimilate synthetic asynchronous observations using the
modified version of KF reported in Mazzoleni et al. [62]. Two flood events and
experimental scenarios from 1 to 9 (see Fig. 7) are considered in this section.

As it can be seen from Fig. 8, increasing the number of social observations within
the observation window results in the improvement of the NSE, but it becomes
negligible for more than ten observations. This means that the additional social
observations do not add information useful for improving the model performance.

From Fig. 8 it can be seen that, overall, assimilation of crowdsourced observa-
tions improves model performances in all the considered flood events. In the case of
scenarios 2 and 3 (represented using warm, red and orange, colours in Fig. 8, for lead
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time equal to 24 h), i.e. random arrival frequency with fixed/controlled accuracy, the
average values of NSE, μ(NSE), are smaller but comparable with the ones obtained
in case of scenario 1 for all the considered flood events. In particular, scenario 3 has
lower μ(NSE) than scenario 2. This can be related to the fact that both scenarios have
random arrival frequency; however, in scenario 3 observations are not provided at
the model time step, as opposed to scenario 2. In scenario 4, represented using cold
blue colour, observations are considered coming at regular time steps but having
random accuracy. Figure 8 shows that μ(NSE) values are lower in case of scenario
4 rather than scenarios 2 and 3. This can be related to the higher influence of

Fig. 7 The experimental scenarios representing different configurations of arrival frequency,
number and accuracy of the streamflow observations [62]

Fig. 8 μ(NSE) values estimated for varying number of assimilated flow observations, for the
intermittency scenarios for the different flood events [63]
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observation accuracy if compared to arrival frequency. The combined effects of
random arrival frequency and observation accuracy are represented in scenario
5 using a magenta colour (i.e. the combination of warm and cold colours) in
Fig. 8. As expected, this scenario is the one with the lower values of μ(NSE) if
compared to the previous ones. The remaining scenarios, from 6 to 9, are equivalent
to the ones from 2 to 5 with the only difference that they are non-periodic in time. For
this reason, in Fig. 8, scenarios from 6 to 9 have the same colour of scenarios 2–5 but
indicated with dashed line in order to underline their non-periodic behaviour.
Overall it can be observed that non-periodic scenarios have similar μ(NSE) values
to their corresponding periodic scenario. However, their smoother μ(NSE) trends are
due to lower variability of NSE values which means that model performances are
less dependent to the non-periodic nature of the crowdsourced observations than
their periodic behaviour. Overall, σ(NSE) tends to decrease for the high number of
observations.

5.2.2 Assimilation of Flow Observations from Both Physical and Social
Sensors

In the following, the contribution of assimilating synthetic flow data from a hetero-
geneous network of physical and social sensors on the semi-distributed model
implemented in the Bacchiglione catchment is analysed. Streamflow observations
from physical sensors are assumed to be synchronous with hourly frequency, while
social observations are considered asynchronous with higher and irregular fre-
quency. Five different experimental settings are introduced and represented in
Fig. 9, corresponding to different types of sensors used.

The physical and social observations are assimilated in order to improve the poor
model prediction at the catchment outlet (city of Vicenza) affected by an underes-
timation of the 3-day rainfall forecast used as normal input in flood forecasting
practice in this area. Scenarios 10 and 11, described in Fig. 7, are used in this
experiment in order to represent an irregular and random behaviour of the social
observations.

Figure 10 shows the results obtained from the experiment settings represented in
case of observations from distributed physical and social sensors. One of the main
outcomes of these analyses is that the replacement of a physical sensor for a social
sensor at only one location (settings B) does not improve the model performance in
terms of NSE for different lead time values. Distributed locations of social sensors
(setting C) can provide higher value of NSE than a single physical sensor, even for
low number of observations in both regular and intermittent social observations. It is
interesting to note that in case of integration between physical and social sensors
(setting D), the NSE is higher than in case of setting C for low number of observa-
tions. However, with the higher number of observations, setting C is the one
providing the best model improvement for low lead time values. Best model
improvement is achieved in case of setting E. In case of intermittent observations
(d, e and f), it can be noticed that the setting D provides higher improvement than
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Fig. 9 Different experimental settings implemented within the Bacchiglione catchment (based on
[62])

Fig. 10 Model performance expressed as μ(NSE) – assimilating different number of crowdsourced
observations, for the three lead time values, having characteristic of scenario 10 (first row) and
11 (second row) (based on [63])
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setting C. In case of high lead time value (12 h), results of setting C tend to be similar
to the ones obtained with setting B. As in case of scenario 10, also in case of scenario
11, the best results are achieved in case of setting E.

6 Conclusions

This chapter describes the novel methods mainly developed within the EU-FP7
WeSenseIt project, aimed to optimally assimilate heterogeneous intermittent obser-
vations, coming from static social sensors, to improve hydrological and hydrody-
namic models for flood prediction. The proposed methods used to assimilate
crowdsourced observations are applied to the Brue and Bacchiglione catchments,
in which different hydrological and hydraulic models are implemented. A Kalman
filter and ensemble Kalman filter are used to assimilate flow observations in linear
and non-linear models, respectively. Observational error is assumed uniformly
distributed with multiplying factors of 0.1 and 0.3 as minimum and maximum values
for the static social sensors, respectively. It is worth noting that because real
crowdsourced observations from citizen were not available at the time of this
study, model-based synthetic realistic flow observations are used instead.

This study demonstrated that crowdsourced citizen-based observations can sig-
nificantly improve flood prediction if integrated into hydrological and hydraulic
models. In addition, networks of low-cost static and dynamic social sensors can
actually complement traditional networks of static physical sensors, for the purpose
of improving flood forecasting accuracy. This can be one of the potential applica-
tions of increasing efforts to build citizen observatories of water. On the one hand,
citizens can play an active role in information capturing, evaluation and communi-
cation, and on the other hand, they can also help in improving models and increasing
flood resilience.

In particular, assimilation of streamflow observations from static social sensors
provides improvements in model performance which depends on the location of
such observations and the structure of the considered hydrological model. Flood
forecasts are influenced by the total number of social sensors and their locations in
the case of semi-distributed model with sub-catchments connected in parallel, while
results achieved with sub-catchment connected in series are more sensitive to the
locations of the static physical sensors but not to their number.

This research proved that assimilation of asynchronous observations results in a
significant improvement of NSE for different lead time values. Increasing the
number of assimilated crowdsourced asynchronous observations within two model
time steps induces an improvement in the NSE. However, after a threshold number
of crowdsourced observations, NSE asymptotically approaches a certain value
meaning that no improvement is achieved with additional observations.

Besides these important results, this work has still certain limitations which should
be mentioned. Additional analyses on different case studies and hydrological/hydrau-
lic model have to be carried out to draw more general conclusions about assimilation
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of the crowdsourced observations and their additional value in different types of
catchments. In addition, the adopted simple hydrologic and flow propagation models
neglect some of the physical processes in complex floodplains (e.g. lamination/
reservoir effects). The internal states of the hydrologic model where crowdsourced
observations are supposed to be observed should be calibrated, since unbiased
models are necessary to optimise data assimilation frameworks [34]. Moreover,
real-life crowdsourced observations provided by citizens using static social and
dynamic social sensors have to be used to further validate the results obtained in
this research.

Overall, with this research we demonstrated that the choice of the proper math-
ematical model and updating technique to be used for flood forecasting may vary
according to the data availability, location of the sensors, type of forecast, etc.
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Abstract Weather radar is a remote sensing instrument that has been increasingly
used to estimate precipitation for a variety of hydrological and meteorological
applications, including real-time flood forecasting, severe weather monitoring and
warning, and short-term precipitation forecasting. Weather radar provides unique
observations of precipitating systems at fine spatial and temporal resolutions, which
are difficult to obtain through conventional raingauge networks. The potential
benefit of using radar rainfall in hydrology is huge, but practical hydrological
applications of radar have been limited by the inherent uncertainties and errors in
radar rainfall estimates. Uncertainties in radar rainfall estimates can lead to large
errors in flood forecasting applications, so radar rainfall measurements must be
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corrected before the data are used quantitatively. This chapter discusses some of the
latest advances in the measurement and forecasting of precipitation with weather
radar and some of the techniques proposed in the literature to correct and adjust radar
rainfall estimates.

Keywords Bias correction, Flood forecasting, Precipitation forecasting, Rainfall
estimation, Urban hydrology, Weather radar

1 Introduction

Water and environmental management increasingly require rainfall products with
good spatial and temporal resolutions over the region of interest for planning and risk
assessment. Weather radars are instruments capable to provide rainfall measure-
ments with suitable spatial and temporal resolutions. The radar (an acronym for
RAdio Detection And Ranging) was developed during the Second World War to
detect enemy aircraft at sufficiently long distances to react to the threat. However,
military users of radar often found radar echoes cluttered with precipitation targets.
They realized that radar systems were sensitive enough to be able to detect precip-
itation. One of the first observations of precipitation made by radar was in 1941
[1]. Originally, weather radars were used for tracking balloons to determine upper
winds and for detection of precipitating cloud systems [2]. Since then, huge progress
has been made, both in terms of hardware and algorithm development. Nowadays,
weather radars can be used to estimate precipitation over large regions for hydro-
logical and meteorological purposes such hydrological modelling, short-term pre-
cipitation forecasting, real-time flood forecasting, improving the initial conditions of
numerical weather models through data assimilation, cloud research, etc.

The operational principle of weather radar is that radar transmits short pulses
(with a wavelength between 2 and 10 cm) of electromagnetic radiation to precipita-
tion particles. The returned signal from precipitation particles has information related
to their physical characteristics (e.g. target range, echo strength and velocity) within
the illuminated volume by the radar beam. The returned signal (or power reflected)
(Pr) from precipitation particles is given by [3]

Pr ¼ C Kj j2Z
r2 ð1Þ

where C is a constant depending on the radar characteristics (e.g. transmitted power,
antenna gain, beamwidth, pulse length, wavelength), |K|2 is the dielectric constant of
the precipitation particles (e.g. 0.93 for liquid water and 0.176 for ice), r is the range
between the radar and target and Z is the radar reflectivity factor. The power reflected
from precipitation particles must be converted into meteorologically meaningful
products (e.g. rainfall rate). Because Pr is measured by the radar, therefore Eq. (1)
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can be used to compute Z. Radar reflectivity factor Z is a measure of the distribution
of particles present within the radar sampling volume. If the precipitation particles
are much smaller than the radar wavelength (Rayleigh scatterers), Z can be
represented as the sixth moment of the drop size distribution, that is

Z ¼
Z 1

0
D6N Dð ÞdD ð2Þ

where N(D) is the raindrop size distribution (DSD) and represents the number of
raindrops of diameter D per unit volume. Z in Eq. (1) is given in linear units
(mm6 m�3) and it can range from very small values (e.g. 0.1 mm6 m�3) in drizzle
to very large values (e.g. 106 mm6 m�3) in very heavy precipitation or hail thunder-
storms. Therefore, it is convenient to express the reflectivity factor in logarithmic
units (dBZ):

dBZ ¼ 10 log 10 Zð Þ ð3Þ

It is worth to mention that if the precipitation particles do not behave as Rayleigh
scatterers (e.g. large snowflakes or large ice particles), then the radar reflectivity
factor is known as the equivalent reflectivity factor (Ze) or just as reflectivity. Z is
equivalent to Ze if the precipitation particles are Rayleigh scatterers and are made of
liquid water. The rainfall rate (in mm/h) can be expressed as

R ¼ 0:0006π
Z 1

0
ν Dð ÞD3N Dð ÞdD ð4Þ

where ν(D) is the terminal velocity (m s�1) of raindrops with a diameter D in
mm. The terminal velocity can be approximated as a function of particle diameter,
which is given by ν(D) ¼ 3.78D0.67 [4] in the absence of vertical air motions. If we
use this terminal velocity, it can be seen that the rainfall rate R represents the 3.67th
moment of the DSD, while radar reflectivity factor Z represents the sixth moment of
DSD. This indicates that Z is largely affected by the larger drops, even if there is a
large fraction of smaller raindrops. This produces a source of uncertainty because
both, Z and R depend to different extend on the DSD, which can continuously
change during a rainfall event and the DSD is known to vary with rainfall intensity
and type of precipitation. Thus, a good knowledge of the DSD is crucial to provide
radar rainfall estimates with good accuracy. The measured reflectivity Z can be
transformed to an estimate of precipitation R by using a Z – R relationship. There are
many Z – R relationships in the literature and the most commonly used power-law
relationship has the form Z ¼ aRb, where a and b are parameters that depend on the
DSD [5]. For instance, the Marshall–Palmer Z – R relationship Z ¼ 200R1.6 [6] is the
most widely used equation in stratiform precipitation, but there are often many
different Z – R relationships quoted in the literature as summarized by Battan
[7]. The choice of the Z – R equation depends on the type of precipitation expected
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in that region and the parameters of this equation can be calibrated either using
radar–raingauge measurements or disdrometer (instruments that measure DSDs)
observations.

Operational weather radars can be classified into Single-Polarization (SP) and
Dual-Polarization (DP) weather radars. DP radars are sensitive to size, shape,
orientation and thermodynamic phase of the precipitation particles [8]. Operational
DP radars alternately or simultaneously transmit vertically and horizontally polar-
ized electromagnetic waves and receive polarized backscattered signals, whereas SP
radars transmit and receive electromagnetic waves using single polarization only
(either horizontal or vertical). SP radars can measure the reflectivity (Z ) only and if
the radar has Doppler capability, they also measure the radial velocities of precip-
itation particles. DP radars can measure additional variables such as the horizontal
and vertical reflectivities (Zh and Zv), the differential reflectivity (Zdr), the linear
depolarization ratio (LDR), the correlation coefficient (ρhv) and the differential phase
(Φdp). These additional measurements from DP radars have shown to provide
significant improvements in terms of data quality and rainfall estimation compared
with SP radars.

2 Sources of Uncertainty in the Estimation of Precipitation
with Radar

Although recent advances in weather radar technology has helped to improve our
understanding of the microphysics of precipitation as well as better rainfall esti-
mates, there are still many challenges to improve the estimation of precipitation at
ground level [9–19]. Rainfall estimation using weather radars can be subject to
different sources of errors such as radar calibration, variations of the DSD, radar
signal attenuation, echoes due to non-meteorological origin, variation of the vertical
profile of reflectivity, radar beam blocking, etc. The following sections describe
some of the work carried out to mitigate some of these errors.

2.1 Radar Calibration

Accurate precipitation estimates using weather radar rely on stable hardware com-
ponents (e.g. transmitter and receiver) with an accurate calibration. Inaccurate
determination of the radar constant C (hereafter referred as radar calibration bias)
can cause a significant error source to the radar precipitation estimations [15]. This
error can cause significant differences in radar rainfall and therefore C must be
carefully monitored. By using up-to-date hardware, radar calibration bias can be
limited to within 2 dB or 36% error in precipitation rate [13]. Many techniques have
been developed to monitor and adjust the radar calibration bias. For instance,
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Whiton et al. [20] proposed a calibration technique using solar interference, and it
has been widely applied on operational weather radars for monitoring the sensitivity
of the radar receiver and antenna pointing accuracy [21–23]. Wolff et al. [24] also
demonstrated the calibration technique using statistical analysis of the echo power
returns from fixed targets (e.g. high ground). For a radar network, the radar
calibration bias can be monitored by joint observations from two or more radars
[25]. This technique ensures the stability of radar calibration by comparing the radar
reflectivity values of two or more radars in the same area. By using dual-polarization
radar, Gorgucci et al. [26] developed a procedure for radar calibration, based on the
self-consistency between the radar reflectivity at horizontal polarization (ZH), dif-
ferential reflectivity (Zdr) and specific differential phase shift (Kdp). However, the
self-consistency technique is also sensitive to the variations of the drop size
distribution and raindrop shape [27]. Furthermore, the stability of radar calibration
can also be monitored by comparing with raingauge accumulations [28]. However,
these comparisons are more suitable for long-term adjustment, due to the differences
in spatial-temporal samplings of the two sensors and the high variability of the Z – R
relationship [29]. Recently, a new methodology [30] has been developed to match
the precipitation observations from ground-based and space-borne radars for the
determination of calibration biases in ground-based radar systems. It has been
shown that the radar calibration bias can be less than 1.5 dB in well-calibrated
ground-based radars. This technique can be a useful tool for the systematic moni-
toring of the radar calibration bias.

2.2 Echoes Due to Non-meteorological Origin

The radar usually scans at low elevation angles to obtain measurements close to the
ground surface. Echoes from mountains or buildings can be misinterpreted as heavy
precipitation, which are known as ground clutter. Such echoes are often permanent
under standard beam propagation conditions, and thus techniques using a map of
ground clutter locations are often successful in removing them [31]. However,
echoes from targets under atmospheric super-refraction conditions are unpredictable
in terms of location. This is known as anomalous propagation (AP), where the radar
beam is bent toward the Earth’s surface due to changes in the atmospheric temper-
ature and humidity distributions [7]. AP is an important source of error in radar
rainfall measurements. For instance, the presence of AP echoes may produce
reflectivities reaching 60 dBZ, which is comparable with echoes observed during
severe thunderstorms [32].

Several methods to identify and suppress clutter echoes have been developed. For
Doppler radar systems, filtering of the radial velocity signal can discriminate clutter
and AP echoes from meteorological echoes. The assumption is that ground clutter
echoes can be characterized as having zero-velocity and narrow spectral widths
compared to weather echoes [33]. However, precipitation echoes may also have
near-zero radial velocity and low spectral widths, which is commonly observed in

Precipitation Measurement with Weather Radars 239



widespread stratiform rain, or when the precipitation system is moving perpendicular
to the direction of the radar beam (i.e. the radial velocity component is zero).
Moreover, the notch filtering of near-zero velocity echoes is ineffective for AP
over the sea as waves have true measurable velocities.

Other techniques developed more specifically to tackle AP echoes are mainly on
analyzing quantities derived from the spatial and temporal information of the
reflectivity field. Spatial information is usually presented in the form of gradients
in the reflectivity field between adjacent range gates in either the horizontal or
vertical dimensions [34]. The common descriptions of the gradient of the reflectivity
field are texture, the reflectivity fluctuations and the statistical features (e.g. mean,
median, mode and standard deviation). These reflectivity fields usually have differ-
ent probability distribution functions (PDFs) for echoes from clutter, AP or precip-
itation. Parameters derived from the reflectivity gradient fields have been used
in probabilistic classification algorithms, such as Bayesian [35, 36], fuzzy logic
[37–39] and neural networks [40, 41] classification algorithms. Recently, a number
of classification methods based on dual-polarization radar measurements were also
introduced [42–44]. The advantage of multiparameter weather radars is their ability
to obtain measurements of hydrometeor characteristics such as the size, shape,
spatial orientation, phase state and fall behaviour [8]. The use of DP radar measure-
ments has enabled more accurate classifications of non-meteorological echoes
[36, 42]. Figure 1 shows an example of squall line moving eastwards; the figure
on the left shows the raw reflectivity data, whereas the figure on the right shows the
same scan with the clutter echoes being removed using the textures of the DP radar
measurements. The use of the textures of the DP radar measurements has enabled a
more accurate classification of non-meteorological echoes. This has also been
demonstrated for the classification of sea clutter [36], echoes due to wind farms
[45] and biological targets (e.g. birds and insects) [46] using fuzzy logic-based
classifiers.

Fig. 1 Raw reflectivity scan (left) and reflectivity scan with clutter being removed (right)
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2.3 Attenuation

Attenuation is the gradual loss of power resulting from absorption and scattering as
the radar signal travels through precipitation. The amount of attenuation depends on
the precipitation particles present along the path of the radar beam and the radar
frequency. The main absorbing substances that cause attenuation of microwaves in
the atmosphere are water vapour and precipitation. Attenuation caused by precipi-
tation increases steadily with radar frequency. At frequencies below 3 GHz (wave-
lengths greater than 10 cm), attenuation is relatively small. However, attenuation of
radar signals by precipitation is a significant problem and one that becomes increas-
ingly severe at wavelengths shorter than 10 cm. For instance, for a uniform rain rate
of 20 mm/h on a 10-km path, the path integrated attenuation (PIA) is around 50 times
greater at X-band frequencies than at S-band frequencies. However, the amount of
PIA depends upon the rainfall rate and the length of the path. The attenuation effects
remain relatively moderate at the C-band radar (5.4-cm wavelength) with a factor of
less than four compared to S-band [33]. For a given wavelength, the amount of
attenuation grows proportionally with rainfall intensity, but its effects are cumulative
with range. In practice, heavy rainfall may lead to a complete loss of radar signal at
X-band frequencies, severely limiting the maximum detectable range, whereas at
C-band frequencies, the radar signals can still penetrate through even the most
intense precipitation. Furthermore, a thin film of water forms on the radome surface
in rain causing additional attenuation, particularly at shorter wavelengths. As a
result, rain attenuation and radome attenuation are important error sources that affect
the radar rainfall estimates. However, modern radomes have water-repellant coatings
(e.g. hydrophobic coating) that might help to reduce radome attenuation. It is
therefore important that steps are taken to mitigate attenuation effects if reliable
radar rainfall estimates are required. Technically, the choice of the radar system with
a longer wavelength (e.g. S-band) is a practical solution to mitigate this specific
issue. However, this comes at a high cost due to the larger antenna of S-band radar
and the higher transmitted power to retain a reasonable resolution and sensitivity.
Shorter wavelength radars (e.g. X-band) have their own advantages, including
smaller-sized antenna and higher sensitivity of the differential phase shift, which is
immune to attenuation and can be used to estimate rain rates in heavy precipitation.
However, several X-band radars are often required to measure precipitation over a
particular region in order to mitigate potential problems of radar signal loss due to
rain attenuation at these frequencies.

Different techniques have been developed to mitigate attenuation effects on radar
systems at shorter wavelengths (e.g. X-band or C-band) [47–50]. Attenuation cor-
rection algorithms that use reflectivity measurements only are known to be unstable
[48]. Early attenuation correction approaches were iterative, correcting the range
gate from the first resolution volume (where attenuation is considered negligible)
and moving to continuous range gates along the beam as it penetrates the precipi-
tation cells. However, such gate-to-gate algorithms are inherently unstable and
certain constraints must be imposed on the maximum amount of attenuation
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correction [48]. An overestimation on the closer range gates can worsen the atten-
uation correction for range gates further away. Attenuation correction procedures
can be greatly improved if the total path-integrated attenuation is available as a
constraint, for example, using dual-frequency radars or dual-polarization radars.

Advances in polarimetric weather radar technology can provide additional phase
measurements that can be used to correct reflectivity measurements for rain attenu-
ation at C-band and X-band frequencies [51]. The attenuation can be estimated by
calculating the total differential propagation phase shift between the vertical and
horizontal orthogonal signals (Φdp). The total differential propagation phase shift
across a rain cell can be used as a constraint to estimate the PIA due to the fact that a
linear relation exists between the two at typical radar frequencies (3–10 GHz).
Differential phase measurements can be used to correct for attenuation in the
reflectivity using algorithms of the form A ¼ αKβ

dp [8], where Kdp (specific differ-

ential phase) is the derivative of Φdp along the range. However, the parameter α is
temperature dependent, but a technique has been developed to estimate this param-
eter in real-time and taking into account the total PIA as a constraint [52].

Figure 1 shows a squall line that produced strong attenuation on the west side of
the radar scan. Figure 2a shows the differential phase measurements. Φdp shows
large differential phase shifts on the west side of the squall line indicative of strong
attenuation in the reflectivity. Figure 2b shows the attenuation-corrected reflectivity
using the algorithm proposed by Bringi et al. [52]. By comparing the attenuation-
corrected reflectivity (Fig. 2) with the original reflectivity scan shown in Fig. 1, it
becomes clear that there are some regions on the west side of the squall line that
showed a strong attenuation of around 10 dB, which can produce a large source of
uncertainty when the reflectivity is transformed to an estimate of rainfall rate if no
correction for attenuation is performed.

Fig. 2 Differential phase measurements (left) and attenuation-corrected reflectivity (right)
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2.4 Variations in the Vertical Profile of Reflectivity

Microphysics determines the hydrometeors present in the atmosphere by affecting
their growth or evaporation and thermodynamic phase, which in turn shapes the
structure of the reflectivity with height [1]. This is known as the vertical profile of
reflectivity (VPR). Significant variability in the VPR occurs as a result of precipita-
tion growth, evaporation, melting of ice particles and snow flakes and wind effects.
Such variations indicate that there are large differences between the radar precipita-
tion estimation at certain altitude and that falling at the ground surface (see Fig. 3).
At low radar elevation angles, the height of the radar beam increases with distance.
As a result, the precipitation particles intercepted by the radar sampling volume
might be due to rain, melting snow, snow, ice, etc. or a combination of different
precipitation particles. This variability affects reflectivity measurements and the
estimation of precipitation may not be representative of the rainfall rate at the
ground. Variations in the VPR are particularly pronounced where melting occurs.
Snowflakes are generally low-density aggregates and when they start to melt they
look like big raindrops to the radar, resulting in larger values of reflectivities
compared to the expected reflectivity below the melting layer [7]. The enhanced
reflectivity in the melting layer is known as the bright band (BB) and it can cause
significant overestimates of precipitation. To overcome ground clutter and partial
beam blockage due to high ground, a weather radar scans at several elevation angles.
The height of the radar beam will increase with distance from the radar site due to
both scan elevation angle and curvature of the earth. The radar beam is likely to
overshoot the shallow precipitation at longer ranges, resulting in underestimation of
the precipitation rate or complete failure to detect the shallow precipitation. On the
other hand, the radar beam can intercept the melting layer at long ranges leading to

Fig. 3 VPR measured with a vertically pointing radar in the UK. The BB is shown at a height of
around 800 m
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overestimation of precipitation. This can produce range-dependent biases in the
radar rainfall estimates [11, 13, 15, 53].

A number of techniques have been proposed to deal with the VPR and BB effects
on radar measurements, including climatological corrections depending on seasons
[54, 55] or rain types [56], characterization of VPR by estimating the altitude and
peak of the BB [57], and retrieval of the VPR by filtering the beam-sampling effects
from the comparison of radar reflectivity at different distances and altitudes
[58, 59]. Fabry and Zawadzki [60] studied the structure of the BB using long-term
observations from a vertically pointing radar with high spatial (15 m) and temporal
(2 s) resolutions. Their results highlighted the importance of the shape, density and
fall speed of the ice particles in the existence of a BB. Andrieu and Creutin [58]
proposed an inverse method for retrieving VPR from a two-elevation scanning radar
based on reflectivity ratio (reflectivity at high elevation divided by reflectivity at low
elevation) function. However, this method assumes VPR homogeneity. Further
improvements in the VPR retrieval methods have been developed by using volume
radar scans (scans taken a different elevation angles) [61–65]. A full-volume scan
radar provides an estimate of the VPR, which can be smoothed by the characteristics
of the radar beam. Bellon et al. [66, 67] highlighted the influence of the spatial
heterogeneity of VPRs on the resulting corrections associated with volumetric
sampling strategy. Kitchen et al. [57] developed a method to correct the BB by
using an idealized reflectivity profile convolved with the radar beam power profile.
The current UK operational correction method is based on Kitchen et al.’s [57]
algorithm which relies on forecasts of freezing level heights in addition to a fixed BB
thickness of 700 m. However, this approach does not allow for spatial and thickness
irregularities in the BB which can occur due to atmospheric variability. Smyth and
Illingworth [68] have emphasized that it is important to use a correction procedure
which uses different VPRs for different precipitation types (i.e. stratiform and
convective). Moreover, the advance of polarimetric radar enabled new techniques
to classify hydrometeors for BB correction, such as the decision tree method, classic
statistical decision theory, neural network techniques and fuzzy logic [43, 69]. Rico-
Ramirez et al. [70] developed a fuzzy logic classifier based on S-band DP radar
measurements to identify the BB and showed that the combination of this classifier
with Kitchen et al.’s [57] algorithm can be used to identify and remove the BB. This
algorithm has also been implemented at operational C-band frequencies and has
shown some skill in identifying and removing the BB [71].

2.5 Variations of the DSD and Radar Rainfall Estimation

Additional errors and uncertainties could be introduced when converting the radar
reflectivity Z into an estimate of precipitation intensity R at ground level [13, 19, 72,
73]. The general form of the Z – R relationship is a power-law given by Z ¼ aRb,
where a and b are the parameters that depend on the DSD. The DSD parameters are
obtained empirically by establishing a climatological Z – R relationship or by
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simulating Z and R over a wide range of DSDs (see Fig. 4). The relationship between
radar reflectivity Z and rainfall intensity R relies on the actual DSD, which varies
between different types of storms [7, 13, 72] and within storms [74–76]. Therefore,
changes in the DSD introduce a time-varying bias in radar rainfall estimates, because
of the use of climatological Z – R relationships. Updrafts and downdrafts can also
cause the Z – R relationship to differ greatly from the one obtained in still air [7].

Some approaches address DSD variability with conventional radars such as
identifying different precipitation types and applying different Z – R equations. In
the US, the relationship Z ¼ 300R1.4 is often used for convective precipitation,
whereas in the UK, the equation Z ¼ 200R1.6 is used for stratiform precipitation.
Automatic classification of stratiform and convective precipitation can potentially
lead to better rainfall estimates.

Conventional SP weather radars can only measure the radar reflectivity
(at horizontal or vertical polarization) to derive precipitation intensity. However,
DP radars can provide more detailed information related to the characteristics of
precipitation particles such as shape, size, spatial orientation and discrimination of
thermodynamic phase [33, 77]. This is because raindrops have an oblate spheroidal
shape being their maximal dimensions horizontally oriented, and that the degree of
oblateness depends on the raindrop size [8].

DP radars can measure Zdr and Kdp. Zdr is a measure of the size of the raindrops
and when combined with Z may improve the estimation of precipitation. Kdp is
almost linearly related to the liquid water content and it also provides the possibility
of better estimates of rainfall rates in heavy precipitation [8]. Therefore, algorithms
of the forms R ¼ cZα10βZdr and R ¼ cKβ

dp have been proposed in the literature. The

R � Kdp algorithm is useful in heavy precipitation and it has the advantage that Kdp is

Fig. 4 Z – R measurements computed from DSD data measured by a disdrometer in the UK. The
red line shows the climatological Z – R equation used operationally in the UK to estimate radar
rainfall rates
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immune to attenuation. The coefficients of these algorithms can be obtained using
scattering simulations of the radar measurements assuming a wide range of DSDs.
Another algorithm of the form Z ¼ aR1.5 has been proposed, where the parameter a is
a function of the DSD concentration, which can be calculated in real-time using DP
radar measurements [78]. A composite algorithm that uses an algorithm Z – R in light
rain, an algorithm R(Z, Zdr) in moderate rain and an algorithm R(Kdp) in heavy rain
have shown to provide more accurate rainfall rates at C-band frequencies [79].

3 Adjusting Radar Rainfall with Raingauge Measurements

Weather radar provides precipitation estimates with good spatial and temporal
resolutions, but as discussed previously, the rainfall estimates can be affected by
different error sources. A raingauge network on the other hand may provide accurate
rainfall measurements, but at individual point locations. However, raingauge mea-
surements are not always available in mountainous areas and the measurements are
also subject to several sources of errors. For instance, typical errors in tipping bucket
raingauges include blockages, wetting and evaporation in the funnel, condensation
errors, underestimation of high rain rates and wind effects [80]. Moreover, the
accuracy of the raingauge measurement is also affected by spatial and temporal
sampling uncertainties. The temporal sampling error is defined as the error resulting
from repeated temporal gaps during the measurements, whereas the spatial sampling
error is defined as the error resulting from approximating an areal estimate using
point measurements [79, 81]. A number of spatial interpolation methods,
geostatistical or non-geostatistical, are available for approximating an areal rainfall
estimate using raingauge point measurements. Geostatistical methods (i.e. kriging)
generally perform better than non-geostatistical methods [82–85]. Kriging for
instance takes into account the spatial correlation of precipitation through the
variogram (obtained from point rainfall observations) that helps to reconstruct the
two-dimensional precipitation field. However, even a high-density raingauge net-
work is unable to fully capture the true rainfall field at short timescales [86–89]. In
order to exploit the strengths of both radar and raingauge measurement approaches, a
number of radar–raingauge merging techniques have been developed. The advan-
tages of merging radar and raingauge rainfall measurements are to produce a rainfall
product that not only provides reliable distributed rainfall information, but also
provide accurate measurements that are in agreement with the raingauge measure-
ments. These merging methods range from non-statistical methods, such as mean
field bias correction [90], spatial correction method [91] and range-dependent
adjustment [92], to more complex statistical techniques. These statistical methods
are based on univariate and multivariate geostatistical analysis, such as co-kriging
[14], kriging with radar-based error (KRE) [93, 94] and kriging with external drift
(KED) [83, 95]. For example, the mean field bias (MFB) correction is a simple and
effective method, which was developed by Smith and Krajewski [90] for adjusting
radar-based quantitative precipitation estimates based on raingauge information and
it is widely used in several studies [31, 96–98]. The assumption is that the radar

246 N. Nanding and M. A. Rico-Ramirez



estimates are affected by a uniform systematic error. This error may be due to a poor
electronic calibration or an erroneous coefficient in the Z – R relationship due to
variations of the DSD [9, 14, 99]. This systematic bias between radar and raingauge
rainfall can be adjusted using raingauge information. The bias adjustment is based on
estimation of a single multiplicative factor as the ratio of the accumulated raingauge
rainfall and the radar rainfall. This simple MFB correction improves radar rainfall
estimation considerably [100] and it is often used operationally [101, 102]. However,
bias adjustment of radar rainfall may be subjected to sampling errors due to the fact
that the raingauge network cannot represent the areal precipitation accurately espe-
cially during high variability of precipitation (e.g. during convective precipitation).
There are however some techniques that account for the sampling errors to estimate
the real-time mean field bias using a Kalman filter technique [90, 96, 97, 103]. Merg-
ing radar rainfall with raingauge measurement using KED is an effective method to
combine both measurements. In KED, the rainfall predictions are modelled as a drift
term plus a residual term. The drift term is an unknown linear function defined
externally through an auxiliary variable (e.g. radar rainfall). A full description of the
KED method is presented in Wackernagel [104], Haberlandt [83], and Verworn and
Haberlandt [105]. The variogram is an important function in geostatistical interpo-
lation [106–108]. The spatial characteristic of the rainfall field contained in the
variogram is influenced by the characteristics of the storm, density of raingauge
network and rainfall accumulation period. The variogram used in kriging methods
can either be parametric or non-parametric and it is calculated independently for
each time step. The predefined model variogram represent the spatial variability of
the rainfall distribution, and therefore the suitability of the model function and
parameter values used to estimate the variogram has impact on the quality of the
final merged rainfall product. However, a non-parametric automatic procedure for
estimating a spatial variability model does not require any prior assumption about
the correlation of the observations. This non-parametric automatic methodology
based on Fast Fourier Transform (FFT) was initially proposed in Yao and Journel
[109] to estimate spatial variability models and further developed by Velasco-Forero
et al. [110] to estimate rainfall fields by merging radar and raingauge data. It is
worth to note that the variogram is a function of both distance and direction
(e.g. anisotropic) in the non-parametric method. This non-parametric spatial vari-
ability model is particularly appropriate for real-time applications of radar observa-
tions for operational purpose.

The performance of any rainfall interpolation method highly relies on the density
of the raingauge network [96, 97, 111, 112]. An accurate estimation of the true
rainfall field often requires a high density raingauge network [81, 113, 114]. Simple
adjustment methods (such as mean field bias correction) are less sensitive to the
raingauge network density, while the improvement by geostatistical methods
(e.g. KED) increases with a more dense raingauge network [115]. Moreover, the
improvement of rainfall estimation by the different radar–raingauge merging tech-
niques may vary between different accumulation timescales. For instance, Berndt
et al. [116] examined the effect of accumulation timescales on the performance of
different merging techniques at different accumulation timescales from 10 min to
6 h. Their results showed that the performance of the radar–raingauge merging
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methods improves for large accumulation times. The improvement of precipitation
estimation by the radar–raingauge merging techniques also varies between seasons
[105, 111] and between storms [115, 117]. Since the radar–raingauge merging
method is the final step for radar-based precipitation estimation, minimizing all the
sources of error in radar rainfall before applying a radar–raingauge merging tech-
nique is important to improve precipitation estimates. Figure 5 shows a comparison
between the original radar rainfall field and the KED rainfall product. The raingauge
observations are also shown in both rainfall fields. As shown, the KED rainfall field
shows the spatial distribution of precipitation from radar and the accuracy of point
observations from raingauges measurements.

4 Applications of Weather Radar

Precipitation observations are made for a variety of reasons, such as real-time flood
forecasting [119], weather forecasting and extreme weather warnings [120], climate
modelling [121, 122], hydrological modelling [123], agricultural meteorology [124],
and for research in meteorology and climatology [125, 126]. Moreover, precipitation
data is also important for many design calculations, such as for sewer system design
[127], assessment of combined sewer overflows [128], flood risk assessment, river
discharges [129] and river water quality [130]. This section mainly discusses
applications related to short-term precipitation forecasting with radar and hydrolog-
ical uses of weather radar.

4.1 Radar-Based Precipitation Forecasting

Precipitation forecasts can be produced either by Numerical Weather Prediction
(NWP) models or by using a sequence of radar rainfall scans. NWP models have a

Fig. 5 Radar rainfall versus KED rainfall; the circles represent the raingauge measurements [118]
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better performance over longer timescales as they dynamically resolve the large-
scale atmospheric processes. Radar-based precipitation forecasting is known as
precipitation nowcasting. Nowcasting models are based on the extrapolation of
radar rainfall scans to track the motion of precipitation cells with a forecasting
lead time of a few hours. Radar-based precipitation nowcasting has a higher perfor-
mance than NWP forecasts for the first few hours of the forecasts, but NWP forecasts
have a better performance at longer forecasting lead times. Radar nowcasting can be
however very valuable for flash flood forecasting in urban areas or hydrological
forecasting in large catchments.

Nowcasting aims to tracking the movement of storms to extrapolate the radar
rainfall field into the future with a forecasting lead time of a few hours [131–

133]. Radar-based nowcasting methods include Tracking radar echoes by correlation
(TREC and COTREC methods), tracking the centroids of rain cells, use of wind
fields from NWP forecasts to advect the precipitation field, the Variational Echo
Tracking (VET) method and optical flow techniques. In the TREC method, the
advection vector for each block is determined using a correlation method, but gaps
appear where blocks diverge. The COTREC algorithm minimizing the divergence of
the velocities of adjacent blocks to avoid the issues observed in the TREC method.
The Variational Echo Tracking (VET) method is similar to the COTREC method,
but also takes into account radial velocities from Doppler radar. Bowler et al. [131]
developed a method to compute the advection field using optical flow techniques
that has shown better performance in cases involving embedded convection. This
method assumes that features in a sequence of radar scans only change shape, but do
not change in size or intensity. Radar echo-tracking techniques assume Lagrangian
persistence along the direction and speed of movement of storms. For forecasts
beyond 5 min, nowcasting systems that rely on Lagrangian persistence are subjected
to errors because storms evolve and change direction [87, 88]. Larger scale precip-
itation features have higher Lagrangian temporal autocorrelation and may persist
longer than smaller scale features in the forecast. In fact, the predictability of
precipitation systems depends on the size of their scale, with small-scale features
being less persistent and less predictable [134]. Also, smaller scale precipitation
features evolve faster than larger-scale features. For instance, isolated thunderstorms
smaller in size (e.g. 10 km) will undergo considerable evolution over a short-time
scale (e.g. 30 min) [135], whereas larger storm systems (e.g. 100 km in size) will
evolve over several hours. This evolution is difficult to forecast and consequently the
skill of the forecast decreases rapidly with lead time. Large-scale precipitation
patterns can be forecasted by extrapolation whereas locally generated precipitation
(e.g. due to convection) is less predictable. Convective storm initiation is therefore
an important area of research in radar nowcasting.

Radar-based extrapolation techniques generally do not account for precipitation
growth and decay [136]. However, precipitation systems evolve with time, and
therefore growth and decay of precipitation processes become important resulting
in a decrease of forecasting skill with lead time. In fact, uncertainties in radar-based
forecasts are due to errors in the original radar rainfall field, uncertainties due to the
temporal evolution of the velocity field (i.e. assumption that the rainfall trajectories
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do not change with time), uncertainties due to the fact that growth and decay of
precipitation is not accounted for and uncertainties related to the type of nowcasting
system used to produce the forecasts [137, 138]. It is therefore common practice for
nowcasting models to account for the uncertainty in the predictions using ensemble
forecasts, which is a set of equally likely forecasts. Ensemble radar-based forecasts
can be generated by adding spatially correlated noise to the deterministic forecast.
The ensemble of forecasts have in common the more predictable large-scale precip-
itation patterns but will differ in the small-scale patterns that are less predictable.
More details on the implementation of ensemble forecasts can be found in Seed
[139] and Berenguer et al. [140].

Although NWP models perform better than radar nowcasting for longer time
scales, NWP models do not generally capture well the initial precipitation conditions
in comparison to radar-based precipitation forecasts. Consequently, in order to
combine the strengths of NWP forecasts and radar nowcasts, new blending methods
have been developed such as the Short-Term Ensemble Prediction System (STEPS)
[141]. With the increase in computer power, new NWP-based nowcasting
approaches based on 4D-Var data assimilation have been developed and look
promising [142]. However, for very short-term forecasts (60-min or so), radar-
based nowcasting can provide better forecasts than NWP-based approaches. This
is particularly important for radar rainfall applications in urban catchments.

4.2 Hydrological Applications

Hydrological forecasting is one of the most important applications of radar rainfall
observations [14, 143–145]. The hydrological processes in river catchments can be
modelled using rainfall–runoff models (also known as hydrological models). These
models have a variety of applications that include flood forecasting. Depending on
the application, hydrological models can have different levels of complexity and can
be classified into lumped, semi-distributed and distributed models. In the UK, the
national flood forecasting system platform uses several hydrological models includ-
ing lumped (the probability-distributed model) and distributed (the grid-to-grid
model) models [146, 147]. These models use radar rainfall measurements and fore-
casts (nowcasts, NWP forecasts or a combination of both) to simulate river flows for
any catchment in the UK. River flow simulations and forecasts are used to issue
flood warnings several hours in advance. In fact, radar-based hydrological forecasts
are extremely important especially during flash floods. Hydrological forecasts with
longer lead times are also available when radar nowcasts are blended with NWP
forecasts. It is obvious that the quality of the hydrological forecasts depends on the
quality of the rainfall measurements [148] and also on the quality of the hydrological
models used to simulate the hydrological processes in a particular catchment.

On the other hand, urban catchments usually have shorter response times [149–

151] and weather radar provides unique information on the dynamics of precipitation
events in space and time at high spatial and temporal resolutions, which is very
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difficult to obtain through a network of raingauges. In fact, urban catchments require
rainfall measurements with higher temporal and spatial resolutions [152, 153]. For
example, Berne et al. [154] suggested that hydrological applications for an urban
catchment with a large area (e.g. 1,000 ha) require rainfall measurements at 5 min/
3 km resolutions, whereas smaller urban areas (e.g. 100 ha) require rainfall mea-
surements with resolutions of 3 min/2 km. Ocho-Rodriguez et al. [155] investigated
the impact of the spatial and temporal resolution of precipitation in the hydrody-
namic response of urban catchments concluding that the temporal resolution of
precipitation affects the modelling results more strongly than variations in rainfall
spatial resolution. They concluded that resolutions of 1 min/1 km appear to be
sufficient for urban hydrodynamic modelling. Although these resolutions are feasi-
ble with small X-band weather radar systems, common operational radar networks
are not able to achieve the temporal resolutions required for small urban catchments.
For instance, the operational weather radar network in the UK provides rainfall
measurements at 5 min/1 km resolutions over the UK. So, it is evident that improve-
ments in radar temporal resolution are required to satisfy urban hydrological appli-
cations in particular for smaller urban catchments. This could be achieved by using
nowcasting models to interpolate 5 min radar rainfall measurements to produce
measurements at 1 min temporal resolutions or by performing additional
low-elevation scans within the 5 min radar scanning strategy.

5 Concluding Comments

Precipitation is the main driver of the hydrological cycle and therefore precipitation
is a key input to hydrological models. Raingauges and weather radars are the most
widely used instruments to measure precipitation. Raingauge measurements are
traditionally used as the main input to rainfall–runoff models. In addition, they are
also used for calibrating and validating radar rainfall algorithms [99, 156]. However,
operational raingauge networks are often very sparse and unable to fulfill the density
requirements for real-time hydrological modelling. Rainfall events with high vari-
ability in space and time may not be represented accurately by a raingauge network.
The greatest benefit of weather radar is its potential to estimate rainfall rates at high
spatiotemporal resolution (e.g. 1 km/5 min) in real-time and over a large area.
Although radar rainfall measurements can be affected by different error sources,
there are different algorithms to control the quality of radar rainfall that enable its
quantitative use for hydrological and meteorological purposes. Polarimetric weather
radars bring several benefits including improvements in radar data quality, identifi-
cation of hydrometeors, attenuation correction and radar rainfall estimation. Several
methods to merge radar rainfall with raingauge measurements have also been
developed in the literature. The merging of radar rainfall and raingauge measure-
ments can bring the benefits of both instruments, that is, the accuracy of point
raingauge observations and the spatial distribution of precipitation from radar
measurements.
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Weather radars have also demonstrated a huge potential for real-time flood
forecasting applications. Weather radar enables the monitoring of extreme weather
events. Radar rainfall can be used to produce short-term precipitation forecasts using
nowcasting models. The combination of radar measurements and forecasts with
other models (e.g. hydrological models or flood models) enables the forecasting of
high-water levels in rivers or potential areas likely to be affected by flooding.
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Abstract Accurate soil moisture indicator is critically important for hydrological
applications such as water resource management and hydrological modelling.
Modern satellite remote sensing has shown a huge potential for providing soil
moisture measurements at a large scale. However its effective utilisation in the
aforementioned areas still needs comprehensive research. This chapter focuses
on exploring the advances and potential issues in the current application of satellite
soil moisture observations in hydrological modelling. It has been proposed
that hydrological application of soil moisture data requires the data relevant to
hydrology. In order to meet the requirement, the following two research tasks
are suggested: the first is to carry out comprehensive assessments of satellite soil
moisture observations for hydrological modelling, not merely based on evaluations
against point-based in situ measurements; the second is that a soil moisture product
(e.g. soil moisture deficit) directly applicable to hydrological modelling should
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be developed. Only fully accomplishing these two steps will push forward the
utilisation of satellite soil moisture in hydrological modelling to a greater extent.

Keywords Flood forecasting, Hydrological modelling, Review, Satellite remote
sensing, Soil moisture, Soil moisture and ocean salinity (SMOS)

1 Introduction

Although soil moisture comprises only 0.01% of the total amount of water on the
Earth [1], the existence of soil moisture is significant for many application areas such
as agriculture, meteorology, climate investigations and natural hazards predictions.
In hydrology, soil moisture is a significant state variable in real-time flood forecast-
ing [2]. Over the past decades, numerous hydrological models have been developed,
representing more or less accurately the main hydrological processes involved at
a catchment scale [3]. The challenge in forecasting floods in a reliable way stems
mainly from the error accumulation of the models, particularly during unusual
hydrological events and after a long period of dryness. Solutions have thus been
introduced to enhance flood forecasting by matching the model with the current
observations prior to its use in forecasting mode – termed as updating or data
assimilation [4]. Since hydrological models are highly sensitive to the state change
of the soil moisture [3], a better soil moisture observation over a catchment should
improve the forecasting performance via correcting the trajectory of the model
[5]. Nevertheless it is very challenging to accurately monitor soil moisture that
varies both spatially and temporally. Conventional in situ networks are expensive
and impractical in large areas, and they are still too sparse to represent the spatial soil
moisture distribution [6–11]. Model-based estimates such as those from land surface
models (LSMs) are another source of soil moisture data, but they are uncertain due
to imperfect parameterisation, meteorological forcing data and time drift problems
(e.g. accumulation of errors) [12–14].

Alternatively, modern satellite remote sensing has shown potential for providing
soil moisture measurements at a large scale [15]. However, satellite soil moisture
products are calibrated mainly by in situ measurements, so they are not directly
relevant to hydrology [8, 16, 17]. Moreover with all orbiting sensors, only the
surface layer soil moisture can be acquired. It has been shown in many studies that
the soil penetration depth is around 0.1–0.2 times the sensor wavelength, where the
longest wavelength is only about 21 cm (L-band, with a penetrating depth ~5 cm)
[18, 19]. Conversely operational hydrological models (most often the conceptual
hydrological models) consider a much deeper surface soil depth (up to 2 m), which
also varies across a catchment.

Clearly there is a mismatch between the satellite-retrieved soil moisture and
the hydrological model-simulated soil moisture, which has caused a commensurate
issue for the full utilisation of remotely sensed soil moisture products in operational
hydrology. Although many studies have been carried out on the evaluation of
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satellite soil moisture observations for hydrological modelling [6–8, 20–22], with
some correlations explored between the satellite soil moisture datasets and the
hydrological models’ soil moisture state variables, their results have limited success
and could be improved further. One possible way is by analysing the fundamental
differences between the hydrological model-simulated soil moisture and the
satellite-measured soil moisture, so that the satellite observations could be enhanced.
The motivation of this study is to review the existing literature and explore the
potential issues in current satellite soil moisture application in hydrological model-
ling, which is topical and timely.

2 Soil Moisture Measuring Methods

First, it is necessary to give a brief introduction of the existing main soil moisture
measuring methods, so that basic knowledge about soil moisture could be better
understood. The following are based on two major categories: in situ and satellite
remote sensing.

2.1 In Situ Instruments

There are several techniques for in situ soil moisture measurements. The most
widely used ones are tensiometer, neutron probe, and time domain reflectometry
(TDR). Tensiometer is widely used in irrigation scheduling to help farmers to
identify the optimal time for irrigation [23]. It is also useful for plant studies.
However this approach is not suitable for sandy soil due to a limited range of bar
(0–0.8) and is not electronically stable for automatic operation [24]. For neutron
probe, although it is able to measure soil moisture at multi-depths fairly quickly and
automatically, it is not capable of giving reliable estimation at shallow depths
because some neutrons can escape from the soil surface into the air. Moreover,
since the device includes radioactive material, its operation requires extremely strict
training and inspection processes [25]. For TDR, the advantages of this method
are its high accuracy, fast response, free from radiation hazard and automatic soil
moisture estimation [26]. However the calibration of the sensor can be difficult and
expensive, and the instrument is easy to corrode [27].

Apart from the aforementioned point-based soil moisture estimation methods,
a novel technique capable of measuring area-averaged soil moisture has been
introduced. It is called COsmic-ray Soil Moisture Observing System (COSMOS).
The working mechanism of COSMOS is it measures the cosmic-ray neutrons above
the ground, whose intensity is primarily dependent on soil moisture [28]. One
COSMOS sensor can cover a horizontal effective area of about 600 m diameter
[29] and the measurement depth from about 12 cm (wet soil) to about 76 cm (dry soil)
[28, 30]. The COSMOS has been mainly installed in the USA and the UK as shown
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in Fig. 1 and elsewhere around the globe (e.g. Australia, Germany, India, etc.).
Although the COSMOS networks are only sparsely available globally, there have
already been some studies carried out using the data: for example, in [33], it showed
COSMOS data could be used to test and diagnose hydro-meteorological models’
performance, indicating the potential for its model assimilation capabilities, as well
as demonstrating the data application in remote sensed soil moisture evaluations;
[34] explored the usage of COSMOS in landscape monitoring in a mixed agricultural
land use system in northeast Austria; and [35] had used the data for hydrological
processes investigation at catchment scales and found a good agreement between the
COSMOS data and the distributed soil moisture sensor network. Since COSMOS is
still under development, it has high uncertainty of soil moisture estimation, for

Fig. 1 COSMOS locations
at (a) the USA [31] and (b)
the UK [32]
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example, the measured neutron intensity can be affected by variations in the atmo-
spheric water vapour that, when not corrected for, ultimately can lead to bias in the
derived soil moisture [36]. Therefore correction procedures must be carried out such
as those studies by [33, 36–38].

2.2 Satellite Remote Sensing

Compared with in situ methods, satellite remote sensing provides soil moisture
observations globally and at larger footprints, so it is more suitable for hydrological
usages. A considerable number of studies have shown that near-surface soil moisture
(~5 cm) can be measured by many remote sensing techniques including optical,
thermal infrared and microwave [39, 40]. The major differences among them are
the region of electromagnetic spectrum employed, the power of the corresponding
electromagnetic energy, the signal received by the sensors and the relationship
between the retrieved signal and the soil moisture [10, 11, 40]. Table 1 lists the
advantages and limitations of each technique for surface soil moisture measurement
and their characteristics [44].

Only a brief description of each technique is introduced as follows, and interested
readers are encouraged to read further details from the references provided.

2.2.1 Optical

Optical satellites measure the reflected radiation of the Sun from Earth’s surface,
known as the reflectance [45]. Its correlation with the soil moisture has long
been recognised [46]. Although there are a large number of optical sensors currently
serving in orbit, relatively fewer studies have been carried out regarding their
application in soil moisture assessment [47]. This is partially because the optical
sensors can only detect the reflectance or emittance at the top few millimetres of
Earth surface. Compared with the longer microwave wavelength, the optical signal
is highly affected by cloud contamination and vegetation cover. Furthermore the
received soil reflectance is not solely affected by the soil moisture but also influenced
by mineral composition, organic matter, soil texture and observation conditions,
which makes this technique less popular for soil moisture estimation [42, 48]. There-
fore the optical technique is normally applicable only under restricted conditions
for soil moisture determination (e.g. with specific soil types, bare soil and climate
dominated by clear sky) [47, 49].

2.2.2 Thermal Infrared

Thermal infrared satellites measure Earth radiative temperature, which is then
converted to soil moisture either singularly or by combination with the vegetation
index information obtained from the optical wavebands (e.g. Normalised Difference
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Table 1 Summary of remote sensing techniques for soil moisture measurements

Spectrum
domain Physical processes

Primary
information Merits Demerits

Optical –

visible, near-
infrared,
short-wave
infrared
(0.4–2.5 μm)

It is related to surface
soil moisture as a
function of spectral
absorption features;
for bare soil, drier
soil generally has
higher soil
reflectance

Soil reflectance High spatial
resolution
Wide cover-
age
Multiple sat-
ellites
available

Limited surface pene-
tration (~1 mm)
Limited capability of
passing through cloud
and
attenuated by Earth’s
atmosphere
Infrequent revisit time
Many other noise
sources
Strongly perturbed by
meteorological condi-
tions and vegetation
coverage
Physical processes
not well understood

Thermal
infrared
(3.5–14 μm)

Soil moisture can
increase both specific
heat and thermal
conductivity of the
soil, hence soil tem-
perature varies; for
bare soil, fluctuations
in land surface tem-
perature are mainly
affected by the vari-
ations of surface soil
moisture

Land surface
temperature

High spatial
resolution
Wide cover-
age
Multiple sat-
ellites avail-
able
Physical
processes
well
understood

Limited surface pene-
tration (~1 mm)
Limited capability of
passing through cloud
and attenuated by
Earth’s atmosphere
Infrequent revisit time
Strongly perturbed by
meteorological condi-
tions and vegetation
coverage

Microwave:
passive
(1–30 cm)

Microwave emissiv-
ity is related to soil
moisture at Earth
surface, due to the
big dielectric con-
stant difference
between dry soil
(<5) and water
(~80); for bare soil,
wetter soil normally
shows lower bright-
ness temperature
(i.e. less emissivity)

Brightness
temperature
Dielectric
properties

Wide cover-
age
Multiple sat-
ellites
recently
available
Low atmo-
spheric
noise
Moderate
surface pen-
etration
(up to 5 cm)
Physical
processes
well
understood

Low spatial resolu-
tion (~ 30 km)
Perturbed mainly by
surface roughness,
vegetation coverage
and incidence angle

Microwave:
active
(1–30 cm)

Based on the empiri-
cal relationships that
relate the radar mea-
sured backscattering

Backscattering
coefficient
Dielectric
properties

High spatial
resolution
Multiple sat-
ellites

Limited swath width
Perturbed mainly by
surface roughness,

(continued)
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Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite). Since soil water content governs the thermal properties (i.e. the
soil thermal conductivity and the soil heat capacity) of the soil, it should be expected
that regions with wetter soil are usually cooler during the day and warmer at night
[50]. Driven by this concept, a considerable number of studies have shown good
accuracy of soil moisture measurements by this technique, such as through the
simple thermal inertia approach [51] and the ‘Universal Triangle’ method [52, 53].
While these approaches are powerful and have thorough physical meanings, they are
still restricted by various factors, similar to those in the optical wavebands. Therefore
their accuracy varies across time and meteorological conditions (e.g. wind speed, air
temperature and humidity) [54, 55].

2.2.3 Passive and Active Microwaves

The primary theory of microwave soil moisture estimation is based on the large
contrast between the dielectric properties of water (~80) and dry soil (<5). Therefore
when the soil becomes moist, the dielectric constant of the soil-water mixture rises,
and this emission fluctuation is recorded by microwave sensors [56, 57]. For passive
sensors, the retrieved emission from Earth surface is proportional to the product
of surface temperature and surface emissivity, which is commonly referred to as
the microwave brightness temperature [58]. For active sensors, a microwave pulse
is first sent and then received. The power of the two signals is then compared to
determine the backscattering coefficient of the surface, which has been proven to be
sensitive to soil moisture [59]. For both sensor types, the measurement efficacy is
related to wavelength, where longer wavelengths (>10 cm) penetrate deeper
into the soil and have more ability to pass through cloud and some vegetation
cover (such as the Soil Moisture and Ocean Salinity (SMOS) satellite with the

Table 1 (continued)

Spectrum
domain Physical processes

Primary
information Merits Demerits

coefficient to volu-
metric soil moisture,
which is linked to the
dielectric constant
difference between
dry soil and water;
for bare soil, wetter
surface soil has
higher backscattering
coefficient

recently
available
Low atmo-
spheric
noise
Moderate
surface pen-
etration
(up to 5 cm)
Physical
processes
well
understood

vegetation coverage
and incidence angle

Note: The table is based on [10, 41–43]
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L-band wavelength (21 cm), which is able to probe about 5 cm into the ground)
[57]. Comparatively, microwave bands have more advantages in soil moisture
estimation than other spectral bands. With the modern microwave satellites
such as the Special Sensor Microwave/Imager (SSM/I) passive microwave radio-
meter (19.35–85.5 GHz; [60]), on board the Defense Meteorological Satellite
Program (DMSP) series satellites since 1987, the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) (from 6.9 to 89.0 GHz; [61]) which operated on
the AQUA satellite between 2002 and 2011, the Advanced Scatterometer (ASCAT)
(radar instrument measuring radar backscatter at 5.255 GHz; [62]) on board the
Meteorological Operational (METOP) satellite series since 2006, the SMOS (Fig. 2;
1.4 GHz) launched in 2009 [58], the Aquarius (L-band radiometer with 1.413 GHz
and scatterometer with 1.26 GHz; [64]) aboard the Argentine Satelite de
Aplicaciones Cientificas-D (SAC-D) spacecraft from 2011, and the Soil Moisture
Active/Passive mission (SMAP (Fig. 3); 1.20–1.41 GHz; [59]) which was just
launched in early 2015, it is anticipated that more advanced soil moisture measure-
ments would be available.

2.2.4 Satellite Missions

Satellites have been monitoring the global soil moisture variations for about 40 years
[66], with missions operated by different space agencies globally. The various
satellite missions are designed to measure soil moisture at different temporal and
spatial scales so that a comprehensive view of Earth’s hydrological processes
can be gained [39]. Table 2 gives an overview of the recent satellite missions that
have been used for soil moisture monitoring.

Fig. 2 SMOS in orbit [63]
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Here a brief description on SMOS and SMAP satellites is given, as those two are
dedicated soil moisture missions for long-term soil moisture monitoring.

SMOS is the first dedicated soil moisture satellite using fully polarised passive
microwave signals at the L-band, with a spatial resolution of 35–50 km
[58, 72]. SMOS retrieves the thermal emission from Earth in both horizontal and
vertical polarisations with a wide range of incidence angles from 0� to 60�. It has a
Y-shaped antenna structure, which comprises 69 small antennas (a diameter of
16.5 cm) and 4.5-m-long arms to perform interferometry and synthesise an aperture
of ~7.5 m [73, 74]. The projection of the synthesised beam on Earth surface is
generally presented as an ellipse whose axis ratio and orientation depend on the
observed point position [74]. As satellite progresses, any given location on Earth’s

Fig. 3 SMAP in the space [65]
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surface is scanned a number of times at various incidence angles, depending on the
location with respect to the satellite subtrack: the further away, the fewer the angular
acquisitions [72]. SMOS offers a global coverage at the equator crossing the times
of 6 a.m. (ascending) and 6 p.m. (descending), both at the local solar time [75].

SMAP is one of the first Earth observation satellites developed by the National
Aeronautics and Space Administration (NASA). It is able to monitor global soil
moisture at the land surface, as well as distinguish freeze/thaw land surface state.
In SMAP, a 40� constant incidence angle is adopted which enables the satellite
to scan the whole Earth in 2–3 days with ascending and descending overpasses

Table 2 Summary of selected satellite missions for soil moisture estimations

AMSR-E ASCAT SMOS AMSR-2 SMAP

Data type
and
frequency

Passive micro-
wave (C-band)

Active
microwave
(C-band)

Passive
microwave
(L-band)

Passive microwave
(8 channels from
6.93–89.0 GHz)

Active and
passive
microwave
(L-band)

Incidence
angle (o)

55 25–65 0–55 55 40

Spatial
resolution

~50 km 12.5 km,
25 km

35–50 km 15–2,170 km
depends on band
(GHz) and
polarisation

3–40 km

Sampling
depth

~0–1 cm 0.5–2 cm ~0–5 cm ~0–1 cm ~0–5 cm

Temporal
resolution

<2 days 3 days 1–3 days Twice a day 3 days

Mission
period

2002–2011 Since 2007 Since 2010 Since 2013 Since 2015

Soil mois-
ture accu-
racy
(m3/m3)

�0.04 0.03–0.07 �0.04 �0.04 �0.04

Space
agency

Japan Aero-
space Explora-
tion Agency
(JAXA)

ESA ESA JAXA NASA

Data hold-
ing
website

1 2 3 4 5

Reference [61] [67] [68] [69] [70]

Note: SMAP radar can no longer return data; however the mission continues to produce
high-quality soil moisture measurements [71]
1: http://nsidc.org/data
2: http://www.eumetsat.int/website/home/Data/index.html
3: https://earth.esa.int/web/guest/data-access;jsessionid¼BC8979A5A504D0E003961303BE9FB4A6.
jvm2
4: https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data/amsr2-nrt
5: https://nsidc.org/data/smap/smap-data.html
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at 6 p.m. and 6 a.m. (local solar time), respectively [59, 76]. SMAP includes a 6 m
diameter conically scanning, deployable mesh reflector antenna which is shared by
both the radiometer and the radar. One of the advantages of SMAP over SMOS is it
combines an L-band radar with an L-band radiometer integrating the strengths of
both active and passive remote sensing for improved soil moisture monitoring. As a
result, the resolution of its soil moisture products is supposed to be high (~3 km).
However the satellite’s radar instrument stopped working on July 7, 2015, due to a
problem in the radar’s high-power amplifier [77]. Currently the SMAP can only
retrieve soil moisture products from its radiometer with a resolution around 36 km
[78]. Another advantage of SMAP is it includes a special flight hardware which is
useful in detecting and filtering radio-frequency interference (RFI), so in many
RFI-affected regions, the data loss problem can be prevented [79].

3 Hydrological Evaluation of Satellite Soil Moisture

As aforementioned, satellite remote sensing techniques are a major tool in retrieving
soil moisture information on a large scale [11] and are able to provide soil moisture
observations globally [58]. In particular, the data acquired by microwave sensors,
both active and passive, have been employed to provide detailed soil moisture
variability in recent years [80]. Due to SMOS’s longer period of data records,
numerous studies have been carried out. Therefore, this paper focuses on discussing
the issues related to its hydrological applications only (nevertheless, the discussions
are general and applicable to other similar satellites).

SMOS soil moisture is calculated from the multi-angular and fully polarised
L-band passive microwave measurements [75]. A number of studies have reported
SMOS soil moisture retrieval, downscaling, and its validation against point-based
in situ measurements over different regions [20, 68, 81–86]. However, in situ
measurements are not directly relevant to hydrological modelling because they
cannot be directly placed into a state variable of a hydrological model. On the
other hand, some attempts have been made on hydrological evaluations of SMOS
soil moisture, such as the ones carry out by [8, 11, 20–22]. The results show the
SMOS soil moisture is not accurate enough for direct hydrological modelling usage,
and additional work such as using separated algorithms for high- and low-vegetated
seasons is needed for improved performance [8].

In comparison with shorter-wavelength satellites such as AMSR-E, SMOS
generally provides more accurate soil moisture information. However some studies
demonstrate that AMSR-E is actually more accurate than SMOS over certain regions
[87–89]. From the temporal availability point, SMOS soil moisture observations
are significantly less available than AMSR-E’s, as shown in Fig. 4.
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4 SMOS Descending and Ascending Overpasses

SMOS makes both ascending and descending overpasses; however the performance
of those retrievals remains unclear [68, 91–93]. Based on the literature review,
previous studies mainly focused on the downscaling, assimilation and evaluation
of the SMOS ascending overpass in order to minimise the observation error caused
by the daytime soil-drying effect and the impact of vertical soil-vegetation temper-
ature gradients [8, 20, 61, 68, 85]. It is expected that satellite soil moisture measure-
ments are more accurate in the hours near dawn when the soil profile has the most
time to return to an equilibrium state from the previous day’s fluxes [94]. Hence,
based on this hypothesis, it is more likely to be true that ascending soil moisture
measurements would have better performance than their descending counterparts
[68]. In addition, based on evaporation demand, it is expected that soil would be
wetter at night and drier during the day; in other words, the ascending pass should
hold higher soil moisture values than the descending pass if there is no rainfall
during the day [83]. However it is found by [22] the SMOS descending orbit shows a
stronger potential for improved hydrological predictions in a medium-sized cropland
catchment. This outcome contradicts the previous hypothesis from other studies that
ascending soil moisture measurements should have better performance than their
descending counterparts. Additionally in [22], it is explored that SMOS retrievals
from the descending overpass are consistently wetter (about 11.7% by volume) than
the ascending retrievals (Fig. 5), which is again not expected. It is explained by the
authors that the results could be partly explained by the RFI from the North Warning
System radars across northern Canada (formerly called the Distant Early Warning
(DEW) Line) [83], which preferentially affects the ascending retrievals in the study
area because of the acquisition time and swath area [91]. The RFI increases the

Fig. 4 Time series of SMOS and AMSR-E soil moisture observations with rainfall, in a cropland
study area (i.e. Pontiac located in Mid-Illinois of the USA [90])
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brightness temperature and hence artificially reduces the measured soil moisture
[83]. But the RFI effect may not be the sole reason; therefore it is encouraged by
the community to carry out more research on this topic, with an extended spectrum
of catchment types, geographical locations and satellite products, so that more
evidential reasons could be revealed and a look-up table might be built.

5 Error Distribution Modelling of SMOS Soil Moisture
Measurements

Since satellite soil moisture measurements can be affected by several error sources
(e.g. algorithms, sensors and physical processes) [95]. Quantification of such uncer-
tainties is particularly important for applying the soil moisture datasets in real-
time flood forecasting systems [96]. More importantly, this is the foundation to the
optimal modelling performance in using such soil moisture datasets. Although there
are many studies on exploring the uncertainty of satellite soil moisture estimates in
hydrological applications, they are mainly represented as summary statistics (such as
root-mean-square error (RMSE), Nash-Sutcliffe efficiency (NSE)) [6, 8, 16, 20, 21,
81–85, 97–99], and there is a lack of attention on the error distribution model (such
as probability density function, spatial and temporal correlation, nonstationarity).

Proper identification of satellite soil moisture uncertainty in hydrological model-
ling is relevant for flow ensemble studies (e.g. error propagation). For example, if the
observed flow falls outside the forecasted ensembles, then further revisions are
required in the formulation of the hydrological model, its states or inputs. However,

0.6

0.4

0.2

0

0.6

0.4

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

2010

2012 2013

DoAW ratio=8.1%

DoAW ratio=11.8%

DoAW ratio=15.4%

DoAW ratio=11.4%

20110.6

0.4

0.2

0

0.6

0.4

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

S
M

O
S

 d
es

ce
nd

in
g 

(m
3 /

m
3 )

S
M

O
S

 d
es

ce
nd

in
g 

(m
3 /

m
3 )

SMOS ascending (m3/m3)

SMOS ascending (m3/m3)

SMOS ascending (m3/m3)

SMOS ascending (m3/m3)
S

M
O

S
 d

es
ce

nd
in

g 
(m

3 /
m

3 )
S

M
O

S
 d

es
ce

nd
in

g 
(m

3 /
m

3 )

a b

dc

Fig. 5 Scatterplots of the SMOS descending soil moistures against the ascending retrievals, with
DoAW ratio presented in each year [22]. Note: DoAW ratio stands for descending-over-ascending-
wetting ratio (i.e. the difference between the descending and ascending soil moistures divided by the
ascending soil moisture)

Satellite Remote Sensing of Soil Moisture for Hydrological Applications. . . 271



if the chosen error distribution model is wrong (i.e. flow uncertainty bands become
too wide or too narrow), it can lead to false conclusions regarding the adequacy of
the input datasets, the hydrological model, and its parameters. Furthermore, under-
standing the uncertainty features of remotely sensed soil moisture is also useful in
controlling and correcting the soil moisture status in a hydrological model after
dry periods, so that error accumulation impact can be reduced. Therefore, error
distribution modelling of satellite soil moisture measurements is vital to the data
application in the hydrological community.

A study by [11] has attempted for the first time in modelling satellite soil moisture
error distribution in hydrological applications. It uses the SMOS soil moisture
product [58] and a hydrological model called Xinanjiang (XAJ) [100] as a case
study. In this study four commonly used probability distributions (Gaussian, extreme
value (EV), general extreme value (GEV), and logistic) are adopted to describe the
uncertainties of satellite soil moisture data, which are extensively evaluated by
using the chi-square statistical test and the bootstrapping resampling technique.
From the analysed results (Fig. 6), it is concluded that GEV is the best curve in
describing the uncertainty of the SMOS soil moisture estimates. During its second-
order error distribution modelling, Gaussian is the most suitable curve for describing
the uncertainty of the GEV error distribution model. These results are rather useful
for satellite soil moisture data assimilation in operational hydrology, because in a
hydrological model, the soil moisture input can be described by ensembles with
stochastic elements and the usage of error distribution modelling allows us to better
understand the system [101, 102]. By analysing the error distribution models of the
input dataset, a decision can be made based on a range of possible outcomes instead
of a fixed dataset; this is rather important in water resource management [102].

Fig. 6 The performance (Nash-Sutcliffe efficiency) of error distribution modelling for satellite soil
moisture applied in hydrological modelling, with the bootstrapping resampling technique [11]
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In the future research of this area, more detailed studies such as the spatial
and temporal dependence analysis should be conducted. Studies are also needed to
consider soil moisture information from other satellite missions over a wider range
of catchment conditions with different hydrological models in order to find gener-
alisation patterns of the error distribution models (this is especially important for
ungauged catchments).

6 The Need for New Hydrological Soil Moisture Product
Development

Although there have been significant investments by various organisations such
as the European Space Agency (ESA), NASA and United States Department of
Agriculture (USDA) in a wide range of soil moisture observational programs
(e.g. satellite missions such as ASCAT, SMOS and SMAP) and ground-based
networks such as Soil Climate Analysis Network, US Surface Climate Observing
Reference Networks and COSMOS, they are not sufficiently used in hydrology
mainly because they are calibrated by in situ soil moisture measurements or
airborne retrievals which have significant spatial mismatch (both horizontally and
vertically) to catchment scales and are therefore less applicable to hydrological
modelling [103].

Similar to many satellites and soil moisture estimation algorithms, SMOS uses
the L-band Microwave Emission of the Biosphere (LMEB) model for the data
retrieval purpose [104]. LMEB is applied to estimate L-band brightness temperatures
(Tbs) for a set of physical parameters, soil composition, and moisture content and
vegetation opacity [74]. In order to estimate soil moisture, the simulated Tbs are
compared with those measured by SMOS using an iterative process to minimise
the difference between them. This approach then requires in situ observation data
for soil moisture evaluation [87, 97]. However most areas do not have in situ sensors
because they are expensive to set up and impractical to maintain; and they are too
sparse for catchment-scale studies [6–10]. Another problem of using this type of
method is that by decoupling the effects of soil properties and vegetation cover
can significantly reduce its soil moisture accuracy and hence its useful application
[105, 106].

In order to retrieve accurate soil wetness information that can be directly used
in a hydrological model and avoid aforementioned shortcomings, a need for a
data-driven model is desirable, which can effectively link the inputs to the desired
output and is not computationally intensive. Works carried out by [7, 21, 99, 107]
are good foundations for future hydrological soil moisture product development.
For example, in [99], three artificial intelligence techniques along with the general-
ised linear model are used to improve the spatial resolution of the SMOS-derived soil
moisture. The land surface temperature data retrieved from MODIS satellite is used
for the data downscaling, and SMD data calculated from a hydrological model called
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probability-distributed model (PDM) is selected for performance evaluation. The
results show that all the downscaled soil moisture products surpass the original
SMOS soil moisture estimation, which are more useful for hydrological modelling.
Another study carried out by [17] describes a new approach to estimate hydrological
soil moisture variables directly from the SMOS multi-angle brightness temperatures
with both the horizontal and vertical polarisations. Local linear regression (LLR) and
artificial neural networks (ANNs) with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) neural network training algorithm and the conjugate gradient training
algorithm models are applied. The overall results indicate that the proposed methods
especially the LLR approach (Fig. 7) have a huge potential to provide hydrologists
with valuable information on the application of satellite brightness temperature for
hydrological soil moisture estimation. It is noted that although many papers have
been published using various data fusion techniques for soil moisture estimations
[105, 108–113], the products they produced are not directly applicable for hydro-
logical modelling. Therefore, they are not discussed in detail in this paper.

7 Discussion and Conclusions

Soil moisture is a key element in the hydrological cycle, regulating evapotranspira-
tion, precipitation infiltration and overland flow. For hydrological applications, the
antecedent wetness condition of a catchment is among the most significant factors
for accurate flow generation processes. Additionally, an operational system requires
reliable hydrological soil moisture state updates to reduce the time drift problem.

Fig. 7 The statistical plot of
the hydrological model
(XAJ) simulated Soil
Moisture Deficit to
Saturation (SMDS) and the
algorithms estimated [17]
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Through reviewing various satellite techniques for soil moisture estimation,
hydrological evaluation of satellite soil moisture and building satellite soil moisture
error model, a major problem in satellite soil moisture utilisation for hydrological
modelling is concluded. It is that current satellite soil moisture products are mainly
calibrated by in situ soil moisture observations. As a result, they are not directly
relevant to catchment hydrological modelling. Therefore, a soil moisture product
that can be directly linked with hydrological models is desired, and more studies
about developing new hydrological soil moisture products as described in Sect. 6 are
needed. Certainly, there are still many specific challenges remained, for example,
currently the soil moisture retrievals are only available at a coarse spatial resolution
which could lead to spatial mismatch problems (e.g. over- or under-representation
of soil moisture condition of a catchment); therefore accurate retrieval up to a finer
resolution may be necessary particularly for those small-sized catchment studies.
This could be achieved by downscaling methods using machine learning techniques.
Another issue is about the depth mismatch between the hydrological model soil layer
and the satellite’s penetration. Currently for most operational hydrological models, it
is difficult to have fixed soil depths. On the other hand, satellite-retrieved data also
have unfixed soil depth, which depends on many factors such as vegetation and soil
roughness. The important thing is to create a linkage between a hydrological model’s
soil moisture state variable and the satellite data (e.g. build mathematical relation-
ships). If a good linkage is built, the satellite soil moisture product can then be used
effectively in hydrological model’s soil moisture state initiating and updating during
real-time flood forecasting. Only breakthrough in those areas will lay a solid
foundation for future data assimilation of soil moisture observations in the real-
time flood forecasting. Furthermore, it is hoped this study will attract attention from
the hydrological community on those problems and encourage more research to
solve them in a wide range of geographical and climatic conditions.
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Abstract Sensors deployed in smart water systems need to meet a number of criteria,
first and foremost robustness of performance, autonomous operation and low main-
tenance. Solid-state, optical sensors are at the forefront in the development of the next
generation of sensors for smart water systems. A range of optical sensor technologies
is currently in use for (near) real-time water quality analysis and between them can
cover most of the relevant quality parameters. Technologies used in the water
industry include UV/Vis absorbance, fluorescence and NIR absorbance spectros-
copy. Spectroscopic methods with potential for broader application include Raman
spectroscopy and laser-induced breakdown spectroscopy. All approaches share the
following properties: fully solid-state hardware, no reagents or other consumables
required for their operation, and automatic interpretation of the sensor data performed
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by increasingly advanced chemometric solutions. This chapter provides a brief
overview of the fundamentals behind these technologies and reviews their use in
water quality monitoring applications.

Keywords Optical sensors, Smart water, Spectroscopy, Water quality

1 Introduction

Understanding and monitoring the quantity and quality of one of the world’s most
precious resources, water, are essential. Currently, the most common method of
analysis of water quality consists of (grab or composite) sampling followed by
laboratory investigation. This approach fails to fully indicate the dynamics of
water quality, since it only provides snapshots of specific points in time. Further-
more, due to delays in transportation, sample preparation and analysis, laboratory
analysis only reveals a history of water quality, and not its current state.

Management of water and wastewater networks, meeting operational demands
and regulatory compliance while simultaneously minimising costs, is becoming
increasingly challenging. The water industry is beginning to recognise that further
progress will be limited as long as assets are operated independently of each other
and retrospectively with regard to changes in load and failures. An integrated
approach to water management potentially offers major advantages to the water
industry, hence the quickly expanding interest in smart water solutions.

The holistic approach that is at the cornerstone of smart water systems requires
greater system knowledge and improved control. The use of real-time control will
enable more flexible and efficient use of existing assets and will provide the ability to
respond proactively to both short-term changes and longer-term challenges. Exam-
ples of areas where smart water solutions can achieve gains include in treatment
processes, e.g. to enable more efficient operation, achieve compliance and reduce the
carbon footprint; in water distribution systems, e.g. allowing reaction to operational
problems and threats to public health and safety and reducing operational costs; in
the sewerage network, e.g. to deal with (rain) events in real-time and moving from
hydraulic to quality control; and in asset monitoring, e.g. to allow better forecasting
and targeting of asset maintenance. For a brief introduction, see Peleg [1]; for a more
detailed review, see Owen [2]. Additionally, there is a trend in the industry towards
small-scale, distributed water systems [3]; although these systems remove the need
for capital-intensive distribution and collection systems, they pose a special chal-
lenge to monitoring as there is no skilled workforce to supervise them and smaller
volumes mean lower equipment costs are required. Without reliable automation and
control solutions, small-scale systems will not be viable.

Real-time information about the water quality and quantity is the basis for smart
water solutions. This information is collected by sensors distributed throughout the
water network. Not all sensors are suited for use in smart water systems. The
deployment of sensors in large numbers, possibly in locations that are difficult to
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access, such as in underground pipe systems, brings a number of requirements.
Amongst the most important technical preconditions are robustness of performance,
autonomous operation and low maintenance requirements. The latter means the
instruments themselves are stable, e.g. free from drift and other effects that neces-
sitate recalibrations, do not need (replacement of) consumables and are self-
maintaining, e.g. that keep themselves clean and compensate for deviations. For a
full discussion on the considerations concerning sensor selection and operations,
please refer to van den Broeke et al. [4].

2 Spectroscopy

One type of instrument that is particularly suited for such demanding applications is
the spectrometer. This chapter will describe the principles and applications of a
number of optical methodologies that are in use as water quality sensors. This
chapter is not intended as an exhaustive review, but provides a brief introduction
in the application of various spectroscopic methods in water monitoring and includes
references to more exhaustive texts.

The technologies described in this chapter have been selected because they are
purely optical; they analyse the primary interaction of light with a sample matrix and
its constituents. No additional aids are used to achieve selectivity or to enhance the
signal, apart from sensitive photo detectors to collect the light after its interaction
with the sample and subsequent data processing. Although other optical techniques
are widely used, e.g. reagent-based photometric methods, the discussion herein
focuses on techniques that meet, or have the potential to meet, the requirements
set out above for sensors suitable for integration in smart water solutions. Most
importantly, these technologies make use of solid-state, long-term stable compo-
nents, do not require chemicals and are compatible with effective auto-cleaning
techniques. Furthermore, with the development of ever smaller electric and optical
components, they lend themselves to further miniaturisation and reduced power
consumption that will be required for large-scale, autonomous deployment in dis-
tributed (water) networks.

The analysis of the interaction of light with matter, incidentally, is the oldest
methodology for studying the chemical composition of samples. The history of
spectroscopy begins with the publication of the studies on refraction of light by a
prism by Isaac Newton in 1672. In this work, Newton proved that white light is
composed of light of various colours. Subsequently it became clear that different
chemicals absorb light of various colours and that this was a property that could be
used to study their concentrations in a matrix. The step towards analysis of water
samples was made in 1856 with the development of Nessler’s method, in which
ammonia in water reacts with mercuric iodide and potassium, forming a reddish-
brown colloid. The colour intensity of the reaction product depends on the initial
concentration of ammonia in the sample.
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With the development of photomultiplier tubes in the middle of the twentieth
century, spectroscopy, especially absorption spectroscopy in the UV, visible and
(near) infrared wavelength ranges, became firmly established in analytical laborato-
ries, both for the analysis of whole samples as well as single components after
separation by chromatography. By the mid-1990s, the online at-site spectrometer
instrument had reached a mature development stage and is since seeing increasing
use in real-time quality monitoring and process control. Applications include mon-
itoring feed and product composition and quality in such diverse industries as
pharmaceuticals, petrochemistry, food, as well as water quality monitoring. The
most commonly used types of spectroscopy in such at-site, sometimes even in situ,
devices are UV/Vis absorbance, near-infrared (NIR) absorbance and fluorescence
spectroscopy. Further methodologies include refractive index measurement, Raman
spectroscopy, laser-induced breakdown spectroscopy (LIBS) and image analysis.

3 Interaction of Light and Matter

All spectroscopic methods rely on the interaction of light with atoms and molecules.
The interaction of light and matter can be described by two different models, one
assuming light as a wave phenomenon and the other assuming light to consist of
particles. The wave approach is most appropriate to describe such interactions as
reflection, refraction and interference. For spectroscopic methods, the interaction of
light with atoms and molecules can best be described using the particle approach,
with the light particles being called photons. The important parameters of a photon
are its energy E, wavelength λ and frequency f, which are related according to
Eq. (1):

E ¼ hc

λ
¼ h f ð1Þ

where h is the Planck constant (6.63 � 10�34 Js). From Eq. (1), it follows that the
energy of a photon is proportional to its frequency and reciprocal to its wavelength.
For the discussion herein, the most important parameter is the wavelength, often
expressed in units of [nm] or [μm]. Another parameter regularly used in spectros-
copy is the reciprocal of the wavelength, the wavenumber ν, often expressed in
[cm�1].

Although the electromagnetic spectrum is broadly divided into eight regions,
ranging from highly energetic γ-radiation to radio waves (Fig. 1), spectroscopy of
aqueous samples is focused on the ultraviolet (UV) (200–400 nm), visible (Vis)
(400–700 nm) and near-infrared (NIR) (750–1,400 nm) domain, with lower wave-
lengths corresponding to higher photon energies. The primary reasons for the
prevalence of these domains in water analysis are the transparency of water to
radiation at these wavelengths and the fact that spectrometers using these wave-
lengths do not require exotic materials or extreme operating conditions.
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UV/Vis, (N)IR and fluorescence spectroscopy are all based on absorption, in the
case of fluorescence followed by emission (Table 1). Photons can be absorbed if the
atom/molecule has energy states that differ by the same amount of energy
corresponding to the photon energy. For ultraviolet and visible radiation, absorption
of a photon results in one of the molecule’s valence electrons being excited to a
higher energy state, while infrared absorption changes the vibrational energy of a
molecular bond. The possible energy transitions that a molecule can undergo are
discrete and determined by its molecular structure and by its environment in
solution. As a result, absorption measurements as a function of the wavelength
(reciprocal of the photon energy) result in spectra that are fingerprints for atoms/
molecules. Figure 2 shows a simplified view of a photon’s absorption and subse-
quent emission.

Although the possible energy transitions for one molecule are very precisely
defined, in practice the signals observed in absorption spectroscopy and fluorescence
are not as well defined. Whereas spectral lines for individual transitions may be
visible in a vacuum, in a solution effects of temperature, inhomogeneities, solute-
solvent interactions and in particular hydrogen bonding mean that each molecule
may have slightly different vibrational levels. Especially in complex molecules, the
possible energy transitions can be so close together that they cannot be distinguished
and are observed as one overlapping signal (Fig. 3). The result is a number of closely

Fig. 1 The electromagnetic spectrum

Table 1 The fundamental light-matter interactions, which form the basis for most spectroscopic
methods

Absorption Matter absorbs light and undergoes a change in energy

Emission Matter releases radiative energy, e.g. after excitation by light

Elastic scattering and
reflection

Interaction between matter and light that changes the direction but not
the energy of the photons

Inelastic scattering Interaction between matter and light that changes the direction as well
as the energy of the photons
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spaced absorption bands that merge together to form a single broad absorption band
as the spectrometer has insufficient resolution to resolve the individual peaks.

Fig. 2 Transitions between various electronic levels (E0, E1 and E2) and vibrational levels.
Absorption of infrared radiation will cause a change in vibrational level, whereas absorption of
UV or visible light will cause a change in the electronic energy level. Fluorescence is the falling
back to a lower electronic energy level by emission of a photon, which will have higher wavelength
(lower energy) than the photon that excited the molecule. The difference in energy is not lost, but
converted to heat through vibrational relaxation. In case a molecule does not fluoresce, the excited
electron falls back to its original level radiationless. Note that only some possible states are
represented, with a typical molecule having many more electronic and vibrational energy levels

Fig. 3 Example of peak broadening in UV/Vis spectroscopy: (a) benzene in vapour phase, (b)
benzene in hexane
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4 Signal Treatment

A water sample, whether natural water, drinking water or wastewater, will contain a
wide range of substances in varying concentrations. The signals from all these
chemicals are recorded simultaneously and in many cases overlap. In spectroscopy
employed for smart water systems, the in situ and real-time nature of the monitoring
requires that a sensor automatically extracts relevant information on the composition
of the water from the superposed spectra. Effects that interfere with the signal, and
therefore must be taken into account when analysing spectral data, include the
absorption and scattering of light by particles and/or air bubbles, wear and tear of
optical surfaces of the sensor (scratches, fouling, scaling), variations between mea-
surements due to slight changes in the spectrum and intensity of the light source and
variations in sensitivity as well as noise in the detector.

4.1 Data Validation

To turn raw data into useful information, modern spectrometers make use of
mathematical algorithms. These clean up the signal and use correlations between
the light intensity at various wavelengths and analytical parameters to calculate
concentrations of specific (groups) of chemicals. Whether spectrometric data is
used for the development of an automatic detection algorithm or for real-time
autonomous data interpretation by the sensor system, the first step in analysis is
always data validation. Because of the amount of data generated, and because of the
fact that real-time process control requires making (near) real-time decisions, it is not
possible to manually verify whether data are reliable and valid. For smart water
systems, automatic validation is critical, ensuring only high-quality measurement
results are used in the automated decision-making processes.

Data validation checks whether the sensor system was working properly during
the measurement and whether the sample analysed was representative of the medium
being monitored. If results are valid and representative, the data is considered
reliable. Typical components in the data validation process include sensor status
checks, noise analysis and detection of outliers, drift, gaps and steps in data. Tests to
validate correct sensor operation include checks against realistic range, detection of
constant values and signal-gradient monitoring [5] as well as hardware and software
error messages. Once identified, anomalous or missing sensor data might be
corrected for, e.g. by interpolation, data smoothing and averaging. More advanced
validation methods include data forecasting [6] and the use of distributed algorithms
in sensor networks where the results for one particular sensor can be inferred from
those of its neighbours [7].

For spectral data averaging is a widely applied method: a set of subsequently
recorded spectra is combined to average out fluctuations in the instrument and
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rapidly changing properties of the medium, such as fluctuations in light reflections
and scattering by air bubbles and particles.

4.2 Transformations

When dealing with raw data that have a low signal to noise ratio, mathematical
transformations can be used to extract useful information. The most widely used
operation for removal of measurement noise is the Fourier transform (FT) [8]. This
utilises the fact that a signal can be represented as a combination of periodic
functions. If the noise and drift on time series data have a significantly different
frequency compared to the signal, they can be filtered out. Typically, low-pass
filtering is used to suppress noise and high-pass filtering to remove drift. Next to
cleaning up the measurement signal, FT is also used in so-called Fourier transform
infrared spectroscopy (FT-IR), a specific method of infrared spectroscopy with a
very good signal to noise ratio and a high wavelength accuracy.

Another operation frequently used to optimise signal to noise ratios and help with
(visual) identification of spectral features is derivatisation [9], as shown in Fig. 4.
This removes spectral interferences such as the gentle absorption increase
vs. wavelength caused by turbidity in UV/Vis spectra, the fouling of the optical
surfaces and light scattering due to air bubbles in the medium, which predominantly
result in offsets in the spectra. Most used is the first derivative, which in particular
helps with visual identification of features such as shoulders on peaks. Practically,
third of higher-order derivatives are not useful as the result of too high noise levels.
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Fig. 4 Raw spectrum (left) and first-order (right) derivative of a UV/Vis absorption spectrum
which shows the changes in the slope of the original spectrum
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4.3 Chemometrics

Chemometrics is the chemical discipline that uses mathematics and statistics to
design or select optimal experimental procedures and to obtain knowledge about a
chemical system, such as a water matrix. In spectroscopy the primary uses for data
analysis algorithms are grouping and classification and modelling relationships
between different analytical data. Examples include the classification of samples,
such as chemical compounds or materials, based on spectra, and the building of
calibration models for calculation of concentrations of chemical constituents in a
mixture, e.g. a water sample. The superposition of numerous single substance
signals in real-world samples causes cross-sensitivities; when the concentration of
an analyte is directly deduced from the signal at one individual wavelength, it will
often respond to other, non-related, variations in the matrix. Chemometric models
are required to extract information on the specific parameters from the spectra.

The most frequently used method to develop calibration models is indirect
modelling using multivariate analysis [10]. In indirect modelling, a calibration
model is built from a dataset containing spectral data and the concentrations of the
parameters of interest. These concentration values are acquired through separate
analytical methods, such as the standard methods for water quality analysis [11]. The
multivariate approach has the advantage that interactions between analytes, or
between analytes and the matrix, can be accounted for in the calibration model.
Also, indirect modelling can deal with any correlations between target analytes. In
water applications such correlations are often quite prevalent, such as, for example,
the strong correlation between chemical oxygen demand (COD) and total suspended
solids (TSS) in wastewater. The first step in the indirect modelling approach is the
grouping of analytical data into clusters. An example of a projection method often
used in spectroscopy is principal component analysis (PCA) [9]. PCA reduces the
dimensionality of a set of variables while conserving the variability within the data
as much as possible. In other words, PCA tries to explain the variance-covariance
structure of the data using a new coordinate system that is lesser in dimension than
the number of original variables; spectra typically consist of 200+ wavelength
measurements (variables). The deduced principal components (PC) are new,
uncorrelated, orthogonal variables that describe a maximum of variance in the
dataset. Another method widely used in spectroscopy is partial least squares (PLS)
regression [8]. Working in a similar way as PCA, PLS reduces a complex
multidimensional dataset into a smaller number of components accounting for as
much variation as possible while also modelling the Y-variables (the reference
values). Because PLS is suited for cases with insufficient data to construct a model
to predict all variability, it is especially popular in industrial applications where
sufficiently complete datasets are often impossible to obtain. Both PCA and PLS are
combined with cross-validation procedures and outlier tests to reach both high
correlation quality and robustness of the model [8]. The result of the calibration
procedure is a function describing how to combine a selection of wavelengths to
calculate the target variables. The goodness of fit is described in the recovery
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function (Fig. 5), which is obtained by plotting the reference measurements (actual
targets) vs. the predicted values (estimated targets).

With increasing sensor complexity, connected sensors and the possible integra-
tion of metadata (e.g. weather data, water quantity information or even social media
data), more advanced data treatment methodologies are required to find meaningful
patterns. Machine learning can be used to find correlations in such big datasets
[12]. Supervised machine learning algorithms, in which the computer is presented
with example inputs and the desired outputs to these inputs, can be used to develop
calibration models in cases where the datasets are too complex to handle by PCA or
PLS. Non-supervised learning is used when looking for hidden patterns in the data.
Not only can this be used to analyse big datasets but also for feature extraction
(e.g. from 3D spectral datasets) and image analysis.

5 In Situ Spectroscopy for Water and Wastewater Analysis

5.1 UV/Vis Absorption Spectroscopy

In the water and wastewater industry, UV/Vis absorption spectroscopy is the most
widely applied spectroscopic method for in situ and/or at-site, real-time monitoring.
For an in-depth study of the principles of UV/Vis absorption spectroscopy and its
application in water and wastewater analysis, Thomas and Burgess [9] provide a
detailed treatise and Mesquita et al. [13] a comprehensive review of parameters
analysed in wastewater systems.

Fig. 5 Scheme of the multivariate calibration procedure

292 J. van den Broeke and T. Koster



UV/Vis absorption spectroscopy uses the linear dependence between the absorp-
tion measured and the concentration of the analytes, called the Lambert-Beer
relationship, to determine parameter concentration values:

A ¼ ε� c � L ð2Þ
Atotal λð Þ ¼

X
i

εi λð ÞciL ð3Þ

where A is the absorption value, ε (λ) is the molar extinction coefficient of the
molecule or ion at wavelength λ, c is its concentration and L is the distance the light
travels through the sample. The absorption at a particular wavelength Ai of multiple
species i in a complex matrix can be linearly added to give a total absorption value
Atotal (λ). For the purpose of water quality monitoring, spectrometer devices use a
reference spectrum recorded in high-purity water which is subtracted from every
measurement. Figure 6 shows an example of a typical UV/Vis absorption spectrum
of wastewater after subtraction of the reference spectrum, illustrating the absorption
of dissolved and suspended matter in the water.

Online UV/Vis spectroscopy started out as a method to estimate the level of
organic matter in water by monitoring the light absorption at 254 nm. The use of
254 nm was the result of initial instruments using a low-pressure mercury light
source, which has a strong emission line at 254 nm. The absorption at this wave-
length correlates with the concentration of natural organic matter (NOM); as many
organic compounds commonly found in water and wastewater (e.g. lignin, tannin,

Fig. 6 Typical UV/Vis absorption spectrum of municipal wastewater. Areas used for determina-
tion of common UV/Vis parameters are indicated
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humic acids, fulvic acids, proteins, various aromatic substances) absorb UV light,
this signal can be used as a surrogate measure of NOM.

These early devices had serious limitations; apart from the limited lifetime of the
mercury lamp, the use of a single wavelength makes the measurement sensitive to
cross-interference; a change in the composition of the matrix, such as caused by
heavy rainfall, the influx of industrial wastewater or the daily and seasonal changes
in composition can cause strong changes in the relationship between UV254 and the
true parameter of interest. For improved correlation, devices using multiple wave-
lengths were developed. The following types of instruments are now widely
available:

• Dual wavelength, with a second wavelength used to compensate for turbidity and
suspended matter.

• Multiple discrete wavelengths using LEDs with emission spectra at various
wavelengths. Specificity is achieved through basic algorithms.

• Full spectral instruments, measuring the entire UV (200–400 nm) or UV/Vis
(200–700 nm) range with nanometre resolution allowing for advanced
algorithms.

UV/Vis spectrometers are offered both as submersible in situ probes and flow-
through devices that can be used to monitor a sidestream. The sensitivity of the
instrument depends on the length of its measurement compartment; a longer path
length gives higher sensitivity but also a reduced maximum concentration level at
which the instrument can operate. Therefore, a device with an optical path that fits
the application needs to be used. Typical path lengths available are in the order of
0.5–100 mm.

5.1.1 Sum Organic Parameters

Natural water as well as domestic and industrial wastewater consists of a mixture of
various organic substances. Using UV/Vis spectroscopy, the sum of all the absorp-
tion signals in the mixture is measured (Eq. 3). The recorded spectra are typically
broad and lack characteristic features, because they consist of overlapping spectra of
the individual components in the sample. Determination of individual substances is
possible only in few applications, with substances with highly characteristic signals
in areas of the spectrum where absorption by other components is low. It is,
however, possible to accurately calculate sum organic parameters from absorption
spectra, even when individual components cannot be identified. Parameters that can
reliably be derived from the spectrum include total organic carbon (TOC), chemical
oxygen demand (COD) and biological oxygen demand (BOD). As the traditional
analytical methods for these parameters are time-consuming, e.g. the 5-day BOD
test, or require toxic chemicals such as perchromate, a purely optical method to
obtain an accurate indication of their concentration levels in real-time is a powerful
tool. Using mathematical turbidity compensation, e.g. based on the description of the
optical properties of turbidity and suspended matter [14], it is possible to filter out the
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signal of the particulate matter and determine the dissolved organic carbon (DOC)
and COD filtered (CODf) concentrations. Although each of these sum parameters
describes a different sub-group of the organic matter, using calibration models each
can be estimated on the basis of the spectral information (Fig. 7).

Online monitoring of sum organic parameters is used in water and wastewater
treatment, as well as environmental studies. In drinking water, TOC is a relevant
quality parameter of water resources, allowing treatment process control such as
coagulation [15] as well as optimisation of disinfection and prediction of disinfection
by-products formation [16]. In finished drinking water, it is a quality indicator
primarily related to aesthetics (taste and odour). In wastewater, COD and BOD are
monitored in the wastewater treatment plant (WWTP) influent to determine pollution
load, to optimise treatment and to protect the plant from overloading. In the plant
effluent, COD can be monitored to determine treatment performance and for consent
monitoring. In environmental studies, TOC is of particular interest in studies related
to impact of human activities and climate change on lakes and rivers and the release
of natural organic matter, e.g. from peat lands and boreal forests [17].

5.1.2 Nitrate and Nitrite

Although real-time UV/Vis spectroscopy is primarily suitable for the monitoring of
sum organics, it is also particularly capable of measuring nitrate and nitrite concen-
trations. Both these ions have a strong absorption signal; in natural waters and
drinking water, their signal dominates the 200–230 nm wavelength range, whereas
in wastewater it is strong enough to allow reliable derivation from the spectral data
using PLS calibration models [10]. Because the spectra of nitrate and nitrite are very
similar, in most cases their combined concentration is determined. Using instruments

Fig. 7 The relationship between UV response and sum organic parameters
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with 1 nm or better spectral resolution, however, it has been possible to obtain
concentrations of both ions individually [18]. Nitrate and nitrite monitoring is
primarily used to monitor and control nutrient removal processes in WWTPs and
to monitor the nutrient load in surface waters.

5.1.3 Colour

Online monitoring of colour is mainly of interest in drinking water treatment. Colour
in water is caused by the absorption of visible light by dissolved and colloidal
substances and by the scattering of light by suspended particles. Both organic
compounds, such as humic acids, and inorganic compounds, such as iron, copper
and manganese, can be responsible for colour in water. The colour of natural water is
typically yellow to brown. Although colour in itself does not constitute a health risk,
high colour is considered aesthetically displeasing, and therefore, limits are defined
for colour in drinking water regulations. The most commonly used standard method
expresses the colour intensity compared to a solution of a platinum-cobalt complex
using Pt-Co units, also referred to as Hazen [11]. A distinction is made between
“apparent colour” for samples which include suspended matter and “true colour” for
samples that do not include suspended matter (after filtration through a 0.45 μm
filter). Both can be determined using online spectrometer instruments, where the
apparent colour value is obtained after applying a turbidity correction on the raw
spectral data.

5.1.4 Turbidity and Suspended Solids

Non-dissolved matter and colloidal matter cause scattering of the light passing
through a water sample. This scattering is referred to as turbidity and is observed
as a cloudiness or haziness of the liquid. A number of standard methods have been
defined to measure turbidity in water. The most common methods are US EPA
method 180.1 and ISO 7027, which measure scattering of light at a 90� angle with a
white (tungsten) and infrared (860 nm) light source, respectively. Instead of 90�

scattering, UV/Vis spectrometer devices measure the attenuation of light at 180�.
The extinction of the signal observed in this instrument layout is caused by the
combination of scattering, blocking and shading by particles as well as absorption by
dissolved and particulate matter. Because the effect of turbidity on the spectrum is
predictable [14] and as in natural water and domestic wastewater the particulates are
the prime absorbers at wavelengths longer than 450 nm, turbidity and total
suspended solids can be derived from the absorption in the visible range of the
spectrum. Turbidity is used to assess the treatability of water and as quality control in
drinking water. For example, an increase in turbidity in the distribution network can
be an indication of ingress of foreign water, e.g. wastewater, resuspension of
sediments or the release of biofilm from pipe walls. In water treatment it can be
used to monitor particle carry-over from (sand) filters, helping in the optimisation of
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the backwashing and cleaning regimes. In wastewater treatment, TSS or the closely
related mixed liquor suspended solids (MLSS) are used to monitor sludge concen-
trations in aeration tanks and to control sludge recirculation and removal.

5.1.5 Other Direct Parameters

Various other substances have a strong and/or characteristic absorption signal that
allows direct measurement. Those relevant for water and wastewater treatment
include the treatment chemicals ozone (O3) and permanganate (MnO4

�) and pollut-
ants such as BTEX (benzene, toluene, xylene), phenol, iron and chromium, which
are indicators for contamination of water with hydrocarbons or industrial waste. In
sewer systems, hydrogen sulphide (H2S) can be measured. H2S is formed under
anoxic conditions and is both dangerous (it is highly toxic) and corrosive, leading to
biogenic sulphuric acid corrosion of pipe materials.

5.1.6 Indirect Parameters

Not all parameters can be measured directly using UV/Vis spectroscopy. In many
cases either the concentrations of the target analytes are too low to detect, or they do
not absorb enough light at the wavelengths monitored. In some cases, however, the
covariance of the invisible analytes with other, detectable components in the
medium allows the building of a calibration model that exploits this relationship.
Such calibration models for the indirect measurement of parameters have been
reported for a wide range of parameters, including ammonium, total nitrogen and
orthophosphate in wastewater, assimilable organic carbon (AOC) in drinking water
and bacteria (E. coli) in surface waters and drinking water. As these models rely on a
consistent relationship between the visible components and the invisible target
analyte, they are often specific for a particular monitoring location, and their validity
needs to be checked regularly.

Another type of indirect parameter is the process parameter. In this case, a
calibration model is built between (variations) in the spectrum and the (desired)
states in a treatment process. These parameters are used as real-time control inputs
and facilitate optimisation of water treatment through reduction of chemical and
energy consumption while safeguarding or improving treatment effectiveness.
Examples of such process parameters include prediction of coagulation dose
[15], prediction of chlorine demand and prediction of disinfection by-product
formation [19].

One method which has been applied especially for the building of models for
process parameters is differential spectroscopy, i.e. the subtraction of spectra mea-
sured before and after a process. The resulting “delta-spectrum” reflects the change
in the composition of the water as a result of the process [9].
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5.1.7 Spectral Fingerprint and Contamination Alarm

Whereas differential spectroscopy for process control evaluates the changes in the
water due to a particular (intentional) effect on the water, contamination alarm
systems focus on detecting unexpected and often unpredictable changes (Fig. 8).
The method used relies on automatic monitoring of the shape of the spectrum
(“fingerprint”) and comparing this shape to known conditions. When the fingerprint
corresponds to a known undesirable state, or in case it does not correspond with a
previously seen shape, the spectrometer reports an alarm. Alarm systems are avail-
able in many forms; the simplest versions monitor the absorption values at specific
wavelengths. More advanced systems treat each spectrum as a vector (the number of
dimensions being equal to the number of wavelengths) and perform a nearest
neighbour analysis in the vector space [20]. With increasing computing power and
storage capacity, more powerful statistical methods capable of handling bigger
historical datasets are becoming available embedded in the sensors themselves,
increasing real-time event detection capabilities.

The most typical applications for event detection are the monitoring of source
waters for drinking water production (detection of harmful contaminations before
the intake) and monitoring finished drinking water to safeguard its quality during
storage and distribution (provide early warning in case of accidental or intentional
contamination). The primary driver in these drinking water applications is protection
of the public health. In wastewater early warning systems are used to monitor the
influent of the WWTP. Here they can detect peak loads and warn for the presence of

Fig. 8 3D absorption plot of a contamination event as it develops over time
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harmful (industrial) contaminations, which can cause failure of the biological
treatment resulting in costs for plant recovery and economic damages due to
noncompliance of the discharged effluent.

5.1.8 Remote Sensing

A recent addition to the field of UV/Vis spectroscopy for water monitoring is remote
sensing. Remote sensing is primarily used to determine levels of chlorophyll,
suspended solids and chromatic dissolved organic matter (CDOM) in lakes and
seas. It uses either long-range satellite-based optical sensors; close-range sensors that
can be hand-held, fixed or mounted on drones; or a combination of both. The sensors
are radiometers, i.e. they measure reflected natural light. Satellites are used to map
the water quality over large areas, whereas smaller land-based systems provide
higher-resolution measurements and have the advantage that they can also be
operated under cloud cover. These are used independently as well as for validation
of optical satellite data. The big advantages of remote sensors are the fact that they
work from a distance, removing the need to physically access a location, and their
ability to cover a large area where in situ sensors only provide spot sampling.

5.2 Fluorescence Spectroscopy

Another method widely used for water quality monitoring is fluorescence spectros-
copy. Light absorbed by a molecule excites it to a higher energy state. Generally,
molecules fall back from this higher energy state to their equilibrium energy state
through various non-radiative mechanisms (Fig. 2). With fluorescent materials,
however, part of the energy is emitted through the emission of a photon. This photon
has a longer wavelength (i.e. lower energy) than the excitation energy. The intensity
of the light at the emitted wavelength (known as fluorescence) is a measure for the
concentration of the fluorescent molecules.

A fluorescence spectrometer is an instrument consisting of the following main
components: a light source, a measurement compartment and a detector. The light
source sends a beam of light at a wavelength tuned to the molecules of interest
through the sample in the measurement compartment. The detector measures the
intensity of the fluorescence generated. Generally, a wavelength filter is placed in
front of the detector, allowing only the fluorescence to fall on the detector. This filter
makes the measurement specific and reduces interference from natural light. Differ-
ent types of online fluorescence spectrometer instruments are available:

• Single excitation – emission pair (excitation at a specific wavelength, emission
measured at a specific wavelength). Often the excitation and/or emission wave-
lengths can be changed, by the user or the manufacturer, via the selection of
different filters and/or different LEDs.
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– Suitable for the measurement of one target substance (group).

• Multiple discrete excitation wavelengths (using multiple LEDs as light source in
combination with a broadband detector).

– Suitable for the measurement of multiple target substances or groups; requires
more advanced calibration and signal processing for deconvolution of the
measurement signal into individual parameters (Fig. 9). An example is fitting
of known spectra of individual analytes to the measurement results; the best fit
will produce coefficients which can be used to determine the concentration of
each component used in the fit.

• Laser-induced fluorescence, in which a laser source excites the target molecules
with higher quantum efficiency than achievable with broadband light sources.
The stronger emission signal allows for remote sensing or spectral analysis using
diode array detectors.

• Fluorescence excitation-emission matrices (EEMs) in which emission spectra are
recorded across a range of excitation wavelengths. Typically used for fingerprint-
ing complex mixtures such as natural organic matter in surface waters and
wastewaters.

5.2.1 Algal Pigments

In algae, fluorescence is a natural by-product of the photosynthesis process.
Although most light captured by the algal pigments is used for the photosynthesis,
a small portion leaks out in the form of fluorescence. The intensity of the

Fig. 9 Intensity of fluorescence emission of various types of algae plotted against the excitation
wavelength (source: BBE Moldaenke, www.bbe-moldaenke.de)
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fluorescence can be used to estimate the concentration of algae and to track
developments in the algal population, e.g. as early warning system for algal blooms.
The central pigment responsible for photosynthesis is chlorophyll. However, as this
is widely present in most photosynthetic organisms, the measurement of chlorophyll
alone does only allow for monitoring total algal concentrations, but not classifica-
tion. As some algae use auxiliary pigments next to chlorophyll A for the collection of
photons, using multiple light sources to selectively excite the specific pigments,
differentiation between classes becomes possible [21]. An example is the use of red
light for the detection of the pigment phycocyanin that is present in cyanobacteria,
which are a major cause for toxic algal blooms. Alternatively, the red fluorescence
of the accessory pigment phycoerythrin is used to monitor some salt water
cyanobacteria. The more advanced instruments attempt to distinguish between
cyanobacteria, green algae and diatoms using spectral curve fitting methods [21],
although adaptation of the calibration to the algae that are predominant in the waters
analysed is often necessary.

It should be noted that in situ measurement of algal pigments does not provide
quantitative information about cell concentrations or biovolumes, as signals strongly
depend on the algae present, their physiological state and environmental factors such
as brightness of the sunlight.

5.2.2 Dissolved Organic Matter

All natural waters as well as drinking waters contain natural organic matter (NOM).
Common NOM compounds include proteins, polysaccharides and humic sub-
stances, which originate primarily from the breakdown products of plant material.
Although NOM does not pose a risk to human health on its own, some NOM
compounds are known to react with chlorine and chloramines to produce disinfec-
tion by-products (DBPs), some of which are carcinogenic and genotoxic. Monitoring
the NOM levels in source waters is used to optimise water treatment and minimise
DBP formation. In particular in surface waters with highly fluctuating compositions,
e.g. strong seasonal influences, or high sensitivity to runoff during heavy rainfall,
monitoring NOM is critical for water treatment performance.

NOM is also receiving attention in research related to climate change, with a
particular focus on the release of NOM from boreal forests [22]. In this work, NOM
levels and composition are used as indicators for changes in the biochemical cycles
and mobilisation of organic matter (e.g. from permafrost) as a result global warming.
Furthermore, changes in NOM may require adaptation of the water treatment
systems to ensure continued supply of safe drinking water.

Monitoring of NOM is focusing on detection of humic and fulvic acids, both
groups of substances with an aromatic character. Due to this aromatic character they
are easily detected using fluorescence. This parameter is referred to as fluorescent
dissolved organic matter (FDOM) and typically measured using fixed excitation-
emission pair filter spectrometer devices. More detailed characterisation can be
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performed using EEM spectroscopy, but its use has been limited to measurement of
discrete samples in static laboratory spectrometers.

5.2.3 Wastewater

Similarly to natural waters, municipal wastewater contains organic matter. A main
role of wastewater treatment plants (WWTPs) is the removal of the majority of this
organic matter. Still, the effluent of a WWTP is a complex mixture of dissolved
effluent organic matter (dEfOM), containing dissolved natural organic matter, solu-
ble microbial products, endocrine disrupting compounds, pharmaceuticals and per-
sonal care product residues, disinfection by-products and more. Although current
online sensors are not capable of monitoring the individual components in the
wastewater effluent, it is possible to measure sum parameters. In Sect. 5.1.1 moni-
toring of BOD and COD using UV/Vis absorption spectroscopy was described.
Fluorescence spectroscopy can also be used to monitor sum parameters, and using
the ratio between characteristic peaks for natural organic matter (humic acids) and
nonnatural organic matter (protein like), sewage contamination of surface waters can
be detected. This is done by comparing peak C (humic like), with excitation at
350 nm and emission at 420–480 nm, and peak T (protein like), with excitation at
250 nm and emission at 340 nm (Fig. 10) [23]. Peak T has been found to correlate
strongly with BOD in rivers and sewer systems. Furthermore, as it correlates
strongly with the concentration of tryptophan, an amino acid derived from microbial
matter, it is also used to estimate the levels of bacterial contamination in sewage-
affected surface waters. For more advanced analysis, EEM can be combined with
advanced statistical methods or automated characterisation and quantification of
substance/contaminant classes [24].
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Fig. 10 An example excitation-emission matrix (EEM) showing the general locations of selected
fluorescence peaks, with letter indication characteristic peaks (Reproduced from US Geological
Survey, https://ca.water.usgs.gov/OMRL/OpticalProperties.html)

302 J. van den Broeke and T. Koster



5.2.4 Oil in Water

Contamination with mineral oils is a recurring issue in surface- and groundwater.
Fluorescence sensors can be used to detect such contaminations. Monitoring the
removal of mineral oils in industrial wastewater treatment, before discharge to sewer
systems or surface waters, is another application. Mineral oils can be monitored with
fluorescence as they typically consist of a mixture of aromatic and aliphatic hydro-
carbons. It is the aromatic fraction which is detectable. Using fluorescence sensors
employing fixed excitation-emission wavelength pairs in the UV range, either
monocyclic aromatics (BTX) or polycyclic aromatic hydrocarbons (PAH) are mea-
sured. The presence of substances from these groups is used as an indicator for
contamination for different types of mineral oil products, e.g. BTX as indicator for
refined oil products (such as gasoline, diesel and kerosene), which are rich in these
components.

More detailed analysis of the oil type can be done using fluorescence spectros-
copy, where a high-resolution spectrometer is used as detector instead of the typical
filter-covered photomultiplier or photodiode. Such instruments, often using laser-
induced fluorescence to get sufficient signal to noise levels, can distinguish between
different oil types. These laser-induced fluorescence (LIF) systems are primarily
used in the offshore industry, refineries and applications where contamination with
lubricating or cooling oils is common, e.g. industrial or bilge water in ships. The oils
in these applications are low in aromatic contents and therefore difficult to detect
using LED-induced fluorescence. A further issue with oil and hydrocarbon products
is their poor miscibility with water, meaning a submersed sensor may not detect a
contamination as is poorly mixed or floats on the surface of the water. To detect
floating layers, remote sensing can be used; using a laser mounted above the water,
the oil layer is illuminated, and the induced fluorescence is recorded. This allows
detection of oil films down to 1 μm.

5.3 NIR

Infrared (IR) spectroscopy is similar to the previously described UV/Vis spectros-
copy but uses a lightsource with a higher wavelength, i.e. lower-energy photons. The
infrared spectrum is divided into near infrared (NIR) (750–2,500 nm), mid infrared
(MIR) (2.5–16 μm) and far infrared (16–1,000 μm). For water quality analysis, the
NIR spectrum is most widely used.

Because photon energies in IR are lower than in UV/Vis, it probes a different
property of the molecule: instead of exciting electrons to a higher electronic energy
level, it changes the vibrational state. IR radiation changes the vibrations of atomic
bonds, with the behaviour of specific bonds depending on the atoms in the bond and
their environment (both within the larger molecular environment as well as the
physical environment, e.g. temperature, solution state). Similar to the electronic
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levels, these vibrational states are discrete, and an IR spectrum reflects these discrete
energy transitions.

In the MIR the absorption bands are well defined, and it is possible to identify
specific atomic bonds. However, radiation in the MIR region does not penetrate
water well enough for direct measurement of water samples. The lower absorption of
NIR radiation by water allows for enough sample thickness to achieve sensitive
direct measurements. Absorption bands in the NIR represent the overtones of the
fundamental bands in MIR, and these overtones are relatively weak and not clearly
delineated; whereas the much sharper signals in the MIR range often allow identi-
fication of individual substances, NIR spectra often do not provide such detailed
information.

The applications of NIR are therefore found in situations where simple mixtures
are analysed. Examples include quality control in food and pharmaceutical industry,
where the expected NIR spectrum is known. A NIR sensor, monitoring deviations
between the measured spectrum and that of a pure product, is a tool in quality
control. Multivariate techniques such as principal component analysis (PCA) and
partial least squares (PLS) regression are used for development of calibration
models.

In the water industry, NIR has been used for various experimental studies, e.g. for
oil in water monitoring or studies on microalgae [25] and extracellular polymeric
substances in wastewater processes [13]. Commercial NIR systems for in situ
analysis of water samples primarily use reflection instead of transmission spectros-
copy; in the transmission mode (e.g. as in UV/Vis spectroscopy), a beam of light
passes through a sample, and attenuation of the light by the sample is measured.
Reflection spectroscopy, however, analyses the light reflected by the top layer of the
matrix, where the makeup of the incident light is modified by the processes of
absorption and scattering. It is used for the analysis of contaminations that float on
the surface of water, e.g. oil slicks, and on media not transparent enough for
transmission spectroscopy. An example is the dewatered sludge from WWTPs
[13, 26]. Parameters measured in sludge include dry matter, ammonia and organic
matter. The application in sludge monitoring offers the possibility for smart process
control, allowing dosing control of polymers used in dewatering and safeguarding
optimal composition of sludge for subsequent digestion.

5.4 Further Optical Technologies with Potential for Online
Use in Smart Water Systems

UV/Vis absorbance and fluorescence are the most widely used spectroscopic
methods in the water industry. NIR also has a well-established place, especially in
industrial applications. Next to these technologies, there are optical methods with
potential for wider use in the near future. A selection is discussed in this section.
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5.4.1 Raman Spectroscopy

As opposed to absorption of fluorescence, Raman spectroscopy studies the scattering
of photons by molecules. When a sample is irradiated with monochromatic light, a
small proportion of photons (0.0001%) are scattered undergoing a shift in frequency;
this inelastic scattering of photons is known as the Raman effect. The difference in
the frequencies of the input and scattered light corresponds to the quantised energy
levels of the molecule studied. For a more complete treatise on the principles of
Raman and instrumentation used, see Li et al. [27].

Raman spectra are more distinct and less overlapped than UV/Vis/NIR absorption
spectra. Therefore, Raman is complementary to absorption and fluorescence spec-
troscopy, as it offers a more selective signal. This allows for classification and in
some cases even identification of target substances. It has successfully been applied
to determine organic and inorganic analytes, including various metals, in a water
matrix with examples including polycyclic aromatic hydrocarbons, pesticides, mer-
cury and arsenic [28, 29]. In the case mixtures are analysed, if the components are
known, the relative peak intensities can be used to generate quantitative information
about the mixture’s composition. In the case of water applications, however, the
number of components may be so high that also Raman spectra overlap, and
identification of individual species becomes impossible. Furthermore, the low per-
centage of photons undergoing inelastic scattering means Raman detection limits are
significantly higher than those achieved with UV/Vis/NIR and are insufficient for
application in online water quality monitoring as discussed here.

Surface-enhanced Raman (SERS) is a technique where Raman scattering is
measured after adsorption of the target molecules on a substrate. This substrate
enhances the sensitivity, in some cases allowing analysis of single molecules or
single cells. As such it has been used to identify bacterial cells. SERS offers potential
for general bacteria classification and pathogen detection [30] and label-free detec-
tion of biotoxins [31].

One promising application for Raman spectroscopy is the characterisation of
microplastics. Although sample pretreatment remains a challenge, the characterisa-
tion of single particles with Raman, e.g. in combination with a flow cytometer, is a
promising development [32].

5.4.2 Laser-Induced Breakdown Spectroscopy

Whereas all technologies discussed thus far analyse sample composition on a
molecular level, laser-induced breakdown spectroscopy (LIBS) is an elemental
analysis technique. In LIBS, a pulsed laser is used to heat a very small spot of the
sample to extremely high temperatures (in excess of 30,000 K). As a result, a small
amount of the material is transformed into a plasma consisting of free electrons, ions
and excited atoms. As the plasma cools and electrons fall down from high-energy to
lower-energy atomic orbitals, light is emitted at wavelengths characteristic for the
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elements present in the plasma. The emission spectrum thus allows a rapid
determination of the chemical composition of the sampled material (Fig. 11).

LIBS has been used since the 1970s but has only recently become available for
rapid analysis outside of laboratory conditions. Although primarily used for the
elemental analysis of raw materials (e.g. for production of pharmaceuticals and in
mining), recently various applications in environmental and water analysis have also
been described [33]. A potentially interesting application is the determination of
ionic species, in particular heavy metals, which remain out or reach for other online
sensor technologies. Sensitivity of LIBS is typically in the low ppm range, although
the use of ultrashort laser pulses (femto seconds) and double pulsed lasers has been
reported to offer the potential of sensitivity improvements. The sensitivity of LIBS,
however, differs widely between various elements. Furthermore, for certain elements
such as arsenic a controlled environment is required as emission lines are located at
such short UV wavelengths that water vapour in the atmosphere will absorb all the
emitted light.

5.4.3 Refractive Index

Refractive index is an optical property of a material that describes the propagation of
light through it. Every substance has a specific refractive index. A mix of substances,
such as a water matrix, can be described by a weighted sum of their individual
refractive indices; all substances dissolved in a water matrix will contribute to the
refractive index of that water matrix. A change in the composition of the matrix will
result in a change in its refractive index. As such, monitoring the refractive index of a
liquid provides information about the stability of the composition of the liquid; a
change in composition will trigger a change in the refractive index. This is partic-
ularly useful for the monitoring of matrices with high stability, e.g. drinking water,
or high-purity water in semiconductor industry; a rapid change in their composition
indicates there is an issue with the water treatment or an intrusion of a contamination.

Fig. 11 Schematic
representation of a LIBS
measurement setup. The
sample can be either solid or
liquid
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Although the refractive index itself does not provide information about the nature of
the contamination, it can provide an early warning of a quality incident. Moreover,
preliminary classification becomes possible when it is combined with one or more
other measurements such as electrical conductivity or UV absorption spectroscopy.
With refractive index being sensitive to all types of substances, both organic and
inorganic, and other technologies being primarily sensitive to either of these groups
of substances, a combination of sensors with intelligent data analysis software will
be able to classify the nature of the agent [34].

A number of technical solutions exist for the accurate tracking of refractive index
changes required to reach ppm and sub-ppm level sensitivity. These include the
Mach-Zehnder interferometer and the optical ring resonator. A crucial factor for
accurate refractive index measurement by these devices is the temperature compen-
sation of the signal. Both have also been used in combination with surface coatings,
such as antibodies, to increase their sensitivity and make them selective to specific
molecules and even microorganisms [35].

5.4.4 Image Analysis

With the growing processing power and image analysis algorithms, various systems
have now been introduced that perform fully automated scanning the particles of
water samples. In such systems a set of optical properties of each particle is
measured. This then allows the classification of the individual particles. Applications
include counting and analysis of algae in surface water as well as monitoring the
total number of bacteria in drinking and wastewater. An approach used in commer-
cially available products for water analysis is 3D scanning with a microscope,
collecting images at different depths in a sample and analysing the in-focus objects.
Another approach uses flow cytometry to analyse individual particles, collecting
scattering and fluorescence spectra of each particle that passes through a laser beam.
Both methodologies assess a range of optical parameters for each particle, such as
shape, size and optical density, in order to classify them. Although not capable of
monitoring hygienic parameters in drinking water, which require single cell detec-
tion and identification in large volumes, these systems provide automatic culture-
and reagent-free analysis of sum microbiological parameters, e.g. total cell count
(TCC) and intact cell count (ICC), based on the characteristics of individual cells.
Products of this type have been arriving on the market over the last 5 years and are
used to monitor drinking water treatment processes and reservoirs, where an increase
in cell counts can be indicative for failure of the treatment or contamination of a
reservoir. They are also used to detect harmful algal blooms [36], for quality control
in aquaculture and to monitor ballast water to prevent dispersion of nonindigenous
organisms [37].
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6 Discussion

In the previous sections, a variety of spectroscopic and related optical methods has
been described, each with current applications in online water quality monitoring or
the potential to be used in such applications. These technologies all share the sole use
of interaction between light and matter as their principal measurement. The fully
solid-state sensor hardware and the lack of reagents mean these sensors are poten-
tially highly robust and potentially provide long-term performance stability. The
current generation of sensors, however, is used in limited numbers and only very
rarely in larger numbers as would be expected in smart sensor networks. The main
reasons for their limited use are maintenance requirements, power requirements,
instrument price and approach to data interpretation.

All optical instruments have an interface where the light used for the analysis
crosses from the interior of the instrument into the sample and subsequently the same
interface or a secondary, for collection of the light and guiding it to the detector. As
only the interaction of the light with the sample is of interest, the optical interface
should be fully transparent. However, when it is in contact with the sample, there is a
risk of buildup of foreign material. Typical issues include scaling and (bio)fouling. It
is therefore critical that optical systems deal with these issues if they are to be
deployed in larger numbers, as otherwise the maintenance will be prohibitive. This
issue is currently not solved in a satisfactory manner. Although manual cleaning
intervals in drinking water applications are often satisfactory, in natural waters and
especially in wastewaters, these sensors require frequent (weekly–monthly) mainte-
nance. New methods to prevent contamination of optical surfaces (e.g. antifouling
coatings) and/or methods to recognise and correct for fouling in the data processing
are required to deal with this issue.

Virtually all spectrometers use an artificial light source. The majority of the
advanced systems described in this chapter make use of incandescent lamps and
arc lamps. Examples are the xenon, deuterium, deuterium/halogen, tungsten/halogen
and mercury/argon lamps. Except for the xenon lamp, which is often used as a flash
lamp, these lamps are used in continuous mode. As the lifetime of these lamps is
measured in hundreds or thousands of hours, they need replacement. Furthermore,
the power requirements for these lamps are such that a main power supply is required
to operate the instruments. LED technology provides an alternative to these lamps.
Although not all relevant wavelengths are currently available using LEDs, UV
spectroscopy and fluorescence devices are making use of this technology. Although
LEDs offer an advantage regarding cost and power consumption, allowing for long-
term battery-powered operation, they suffer from decreasing brightness over time,
which needs to be monitored and corrected for. As a result such instruments require
occasional recalibration or replacements of LEDs, e.g. every 1–2 years.

Instrument prices for the devices described vary widely but are all in the 1,000+
euro range. The simplest LED-powered single or dual wavelength devices can be
acquired for a few thousand euro, whereas the more advanced spectrometers may
cost upwards of 30,000 euro. Even the costs for the simpler instruments prohibit
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their large-scale deployment. It has to be noted, however, that the production
volumes of these devices are low, typically in the hundreds or at most a few thousand
per year. Therefore, these are all specialty products, which are intrinsically less cost-
effective to produce than mass products. With ongoing miniaturisation of compo-
nents and increasing demand (e.g. in situ UV/Vis spectrometer sales volumes have
been increasing steadily for the last 15 years), prices can be expected to decrease in
the future.

Perhaps the biggest challenge to wider use of these instruments is the data
interpretation. This is less of technological challenge than a conceptual one. Most
spectroscopic methods, as described previously, do not provide information on
specific compounds but on the general state of the sample and/or on substance
groups. In the water industry, however, a substance specific look at water quality
is deeply ingrained. Spectrometer devices are traditionally compared against labo-
ratory methods and are in many cases found to be less sensitive and less specific and
therefore disregarded. However, they provide a different type of information: con-
tinuous insight into water composition and a much broader coverage and descriptive
power on the state and state changes of a medium than can be achieved with the
traditional grab-sampling and laboratory approach. The complementary nature of the
online approach is of prime importance; the online methods are not likely to replace
the laboratory altogether, but they provide another level of information. It is espe-
cially this real-time information that allows the direct monitoring of water systems
and allows for operational and control applications. Furthermore, the continuous
monitoring of the state of the water and changes therein provides useful inputs for
smart water systems, especially when combined with other data sources.

Although all the methods described have the potential to produce results
(near) real-time, each methodology provides a different type of information. The
established methodologies primarily provide information on classes of chemicals
and a small number of selected substances. The techniques that so far remain in
limited use or have only been demonstrated to have potential in academic research
are either more generic offering a generic chemical status indicator (refractive index)
and generic microbiological status indicator (image analysis) or are highly specific
for molecules (Raman) or elements (LIBS). Table 2 provides a short overview of the
different methods and their strengths and weaknesses.

The primary application of the technologies described is found in process control
and early detection of incidents or process failures. These are applications where a
rapid response is essential. This is where the current generation of online systems
comes into its own. The possibility to monitor processes and, through better under-
standing, optimise operation and control means a positive return on investment can
be achieved. The case for quality monitoring, e.g. for drinking water, is often more
difficult to make as it primarily provides more insight but not necessarily any gains
in operational efficiency or reduction in costs. Online monitoring of wastewater
effluent for compliance purposes is, however, in some cases being applied as it can
be used to determine the total contaminant load discharged as well as failure of the
treatment. Monitoring for legislative purposes on individual substances remains
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Table 2 Overview of spectroscopic methods and their general characteristics

Method Generic properties Advantages Disadvantages

UV/Vis
(absorption)

• Measures broad
spectrum and uses cali-
bration algorithm to
extract desired informa-
tion
• Broad spectral sig-
nals
• Primarily sensitive
for organic substances
with unsaturated bonds
(e.g. aromatics)
• Sensitivity down to
high ppb level for sub-
stances with high
absorption coefficients

• Good for sum param-
eters (BOD, COD, TOC,
TSS)
• Good at fingerprinting
(distinguish between nor-
mal/abnormal conditions)

• Limited capability to
identify individual com-
pounds
• Sensitivity varies
widely per compound,
with poor sensitivity for
aliphatic hydrocarbons
and most inorganics
• Cross-sensitivity to
substances with
overlapping spectra can
be an issue when not
compensated through
calibration algorithms

Fluorescence • Uses combinations of
excitation an and emis-
sion wavelength to mea-
sure specific groups of
substances
• Primarily sensitive
for organic substances
with unsaturated bonds
(e.g. aromatics)
• ppb level sensitivity

• Good for sum param-
eters (BOD, FDOM, oil
in water)
• Good at detecting
algal pigments
• High sensitivity for
polycyclic aromatics (low
ppb to high ppt levels)
• Suitable for
noncontact/remote appli-
cations and monitoring of
floating layers

• Difficulty with iden-
tification of individual
compounds
• Sensitivity varies
widely per compounds,
with poor sensitivity for
aliphatic hydrocarbons
and most inorganics
• Equipment not flexi-
ble: excitation and emis-
sion wavelengths fixed,
not flexible in substances
that can be detected

Near
infrared
(absorption)

• Measures broad
spectrum and uses cali-
bration algorithm to
extract desired informa-
tion
• Measures molecular
bonds (e.g. O-H)
• Broad spectral sig-
nals
• ppm level sensitivity

• Good at fingerprinting
(distinguish between nor-
mal/abnormal conditions)
• Reflection spectros-
copy useful in inhomo-
geneous and
nontransparent media

• Difficulty with iden-
tification of individual
compounds
• Cross-sensitivity to
substances with
overlapping spectra can
be an issue when not
compensated through
calibration algorithms

Raman
(scattering)

• Spectra with distinct
signals

• Suited for both
organic and inorganic
analytes, including
metals
• Allows identification
of individual substances
• SERS offers possibil-
ity for pathogen detection

• Detection limits
higher than with
UV/Vis/NIR
• Sensitivity varies
widely per compound

LIBS
(emission)

• Provides elemental
information
• Mid-ppm level
sensitivity

• Capable of measuring
all elements, from hydro-
gen to uranium
• Capability to detect

• Sensitivity insuffi-
cient for low level
detection of most con-
taminants

(continued)
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limited to nitrate; spectroscopic measurement of nitrate is listed as a standard method
[11]. Especially for trace contaminations, where individual substances concentra-
tions are requested at the low ppb or even ppt levels, the current generation of
spectrophotometric devices is lacking in sensitivity when applied in a water matrix.
Typical sensitivities for each technology type are given in Table 2.

7 Outlook

Smart water systems are expected to revolutionise the water industry. Through the
combination of information from various sources at all levels in the water system,
more effective management will become possible. This will help reduce costs,
increase safety and ensure that infrastructure will be able to cope with changing
demands, such as urbanisation, climate change and decentralisation. In this data-
driven approach, sensors are an essential link in the chain, as they provide the raw

Table 2 (continued)

Method Generic properties Advantages Disadvantages

independent of the nature
of the analyte-plasma
releases all atoms from
their chemical environ-
ment. Use, e.g. to detect
total concentration of an
element, such as P, As or
Cr

• Sensitivity varies
with element and with
sample matrix
• Provides elemental
composition of the sam-
ple, no information on
chemical composition

Refractive
index

• Measures physical
property of sample,
which is responsive to
the chemical makeup of
the sample
• ppm level sensitivity

• Generic, sensitive to
all types of chemicals,
both organic and inor-
ganic
• Good for monitoring
stability/variability of the
sample composition
• Consistent sensitivity,
with only minor varia-
tions between different
types of substances

• Generic, not possible
to identify the cause for a
change in signal

Image
analysis

• Analysis of combina-
tions of optical proper-
ties of particles
• Targeting samples
with cell concentrations
in the 1,000/mL or
higher

• Culture- and reagent-
free analysis of microbi-
ological properties, such
as total cell counts
• Combinations of opti-
cal properties sometimes
allow for classification of
cells

• Only suited for anal-
ysis of particles
• Time-consuming
when analysing proper-
ties of individual cells
(e.g. flow cytometry)
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data upon which the whole system is built. As smart systems are expected to acquire
information not only from traditional monitoring locations such as water treatment
plants, but actually from the entire water system, there is a requirement for durable,
autonomous, networked and affordable sensor technology. Optical sensor systems
provide a good basis for this sensor generation: they are robust and low maintenance.
In this chapter a selection of technologies has been described, which have proven
they can provide valuable information on the composition and quality of water.
Although the current application of these methodologies in real-time online sensing
remains limited, such sensors, UV/Vis absorbance and fluorescence devices in
particular, have become widely accepted and established in the water industry.
Their use is on the rise, especially in process monitoring and control and as early
warning systems. This is expected to gain further momentum as the performance and
cost-effectiveness of these systems increase further.
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Abstract Water monitoring technologies are widely used for contaminant detection
in a wide variety of water ecology applications such as water treatment plants and
water distribution systems. A tremendous amount of research has been conducted over
the past decades to develop robust and efficient techniques of contaminant detection
with minimum operating cost and energy. Recent developments in spectroscopic
techniques and biosensor approach have improved the detection sensitivities,
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quantitatively and qualitatively. The availability of in-situ measurements and multiple
detection analyses has expanded water monitoring applications in various advanced
techniques including successful development in hand-held sensing devices, which
improves portability in real-time basis for the detection of contaminants, such as
microorganisms, pesticides, heavy metal ions, and inorganic and organic components.

Keywords Biosensor, Contaminant, Functionalization, Gold electrode,
Immunosensor, Organic threats, Pollutants, Quartz crystal microbalance (QCM),
Transducer, Water

1 Introduction

The Safe Drinking Water Act defines the term “contaminant” as meaning any
physical, chemical, biological, or radiological substance or matter in water. There-
fore, the law defines “contaminant” very broadly as being anything other than water
molecules. Drinking water may reasonably be expected to contain at least small
amounts of some contaminants. Some drinking water contaminants may be harmful
if consumed above certain levels, while others may be harmless. The presence of
contaminants does not necessarily indicate that water poses a health risk. Waste
production from agriculture, industrial sewage, and animal and human activities are
affecting the boundaries between clean and waste water, causing a reduction in the
fresh water available for humans. Water ecology provides services such as food
production, nutrient cycling, habitat provision, flood regulation, water purification,
and soil formation. Biological and chemical contaminants in tap and drinking water
can initiate the evolution of contagious diseases.

The following are general categories of drinking water contaminants and some
examples of each:

• Physical contaminants primarily impact the physical appearance or other physical
properties of water. Examples of physical contaminants are sediments or organic
material suspended in the water of lakes, rivers, and streams from soil erosion.

• Chemical contaminants are inorganic elements or compounds. These contami-
nants may be naturally occurring or due to human activities. Examples of
chemical contaminants include nitrogen, bleach, salts, pesticides, metals, toxins
produced by bacteria, and human or animal drugs.

• Biological contaminants are living organisms also referred to as microbes or
microbial contaminants. Examples include bacteria, viruses, protozoan, and
parasites.

• Radiological contaminants are chemical elements with an unbalanced number of
protons and neutrons resulting in unstable atoms that can emit ionizing radiation.
Examples of radiological contaminants include cesium, plutonium, and uranium.

Recently, analytical technologies in water monitoring have taken a variety of
directions. There are several water monitoring techniques, including conventional
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instrumental analysis (laboratory-based analysis), sensor placement approach,
model-based event detection, microfluidic devices, spectroscopic approach, and
biosensors. Selecting a certain detection technique is strongly dependent on the
purpose of the analysis, whether it requires quantitative, qualitative, or hybrid
measurements. Biological and chemical sensors have been in great demand for use
in water monitoring technology, and they appear to be suitable for device integration
and commercialization.

Previously, the detection of water contaminants was often conducted manually in
water laboratory facilities [1]. At the laboratory level, analyses are usually carried
out by skillful personnel using high-end and cutting-edge technologies. Conven-
tionally, multiple fermentation tube technique [2], filtration method [3], DNA
amplification [4], fluorescence in-situ hybridization (FISH) techniques [5, 6], capil-
lary electrophoresis [7, 8], field-flow fractionation [9], chromatography [10], mass
spectrometry [11], and electrochemical-based device [12] are the most commonly
used instruments. The overall benefits of laboratory-based analytical methods have
been recognized since a long time, but recent studies have shown that they are not
efficient for on-site monitoring applications. With the technological advancements in
analytical chemistry, new techniques have been developed through the introduction
of advanced spectroscopy [13] and water quality sensors [14–16].

High sensitivity and real-time monitoring of mass changes on the sensor crystal
make quartz crystal microbalance (QCM) a very attractive technique for a large
range of applications. The development of QCM systems for use in fluids or with
viscoelastic deposits has dramatically increased the interest for this technique.
A major advantage of the technique used for liquid systems is that it allows for a
label-free detection of molecules. QCM is capable of measuring mass changes as
small as a fraction of a monolayer of atoms. QCM crystals are becoming a good
alternative analytical method in a great deal of applications such as biosensors,
analysis of biomolecular interactions, study of bacterial adhesion at specific inter-
faces, pathogen and microorganism detection, study of polymer film–biomolecule or
cell–substrate interactions, immunosensors, and extensive use in fluids and polymer
characterization and electrochemical applications among others. QCM is used also
in gaseous environments, e.g., as gas and humidity sensors and for the detection of
aerosols [17], but its main capability consists in providing real-time monitoring of
contaminants in process, recycle, and waste water; groundwater quality monitoring;
detection of contaminants in streams, lakes, and water supplies; monitoring dumping
in off-shore waterways [18].

2 Theory and Modeling of QCM Data

2.1 Sauerbrey’s Equation: Rigid Mass

The first quantitative analysis of using quartz crystal resonators as mass sensors was
developed by Sauerbrey in 1959 [19].
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The deposition of an additional mass causes a decrease in the resonance
frequency of the quartz crystal resonators. The Sauerbrey’s equation provides a
linear relationship between variations in the resonance frequency and the mass of
a film present on the quartz crystal surface. This linear relationship is valid if the
following assumptions are fulfilled:

• the film mass and thickness are much smaller than those of the quartz crystal;
• the film is uniform, rigid, and rigidly attached to the quartz crystal surface;
• the quartz crystal oscillation takes place in vacuum or air.

Sauerbrey’s equation is not valid when the deposited film is liquid because it does
not follow the shear oscillations of the quartz crystal surface in a solid manner.
Indeed, if just one face of the quartz crystal is immersed in a viscous liquid, there are
mechanical dissipation phenomena that make the Sauerbrey’s relationship
inapplicable.

The application of an alternate voltage to the electrodes deposited on the quartz
crystal surface causes a shear deformation that propagates along the thickness
(Fig. 1). The Sauerbrey’s relationship is obtained by solving the unidimensional
equation for a transverse shear wave propagating along the direction of the crystal
thickness. It is based on the idea that a film deposited on the quartz crystal surface
increases its thickness, causing an increase in the stationary shear wavelength
propagating along the quartz thickness.

The frequency values of the free standing shear waves are given by the following
relationship:

f N ¼ N vs

2hs

where hs is the quartz thickness, vs is the propagation speed of the shear wave, and
N ¼ (1, 3, 5, . . .) is an odd number. It is not trivial to point out that the only
harmonics that can be excited are those that have an odd wave number.

Under the hypothesis reported above, it is possible to derive the Sauerbrey’s
equation, which establishes a linear relationship between the variation of the

Fig. 1 The application of an alternate voltage between electrodes induces a shear deformation due
to piezoelectric effect. Reprinted with permission from [20]
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resonance frequency ΔfN and the deposition of an additional mass, Δm, rigidly
connected to the quartz crystal surface:

Δf N ¼ �N
2f N

2

μqρq

� �1=2
� Δm

A

where fN is the unperturbed resonance frequency of the N-th mode, μq is the
piezoelectric shear strength of the quartz crystal, ρq is the mass density of the quartz
crystal, and A is the electrode surface. It is important to note that the coefficient of
proportionality depends only on intrinsic characteristics of the quartz crystal
resonators.

2.2 Sauerbrey’s Mass Sensitivity

Assuming that the rigid film is uniformly deposited on the quartz crystal surface, it is
possible to define the sensitivity of the quartz crystal resonators SN, measured in the
CGS unit as g�1 cm2 s�1, as the ratio between the frequency variation ΔfN and the
variation of the surface mass density:

SN ¼ Δf N

Δm=Að Þ

which can be written in the form:

SN ¼ �N
2f N

2

μqρq

� � ¼ � 2f N
2

ρqvs

For an AT-cut quartz crystal, which is a specific cutting of original crystal stones
characterized by a cut angle of 35� 150 respect to the crystallographic Z-axis, the
piezoelectric shear strength is μq ¼ 2.947 � 1011 g cm�1 s�2, the mass
density ρq ¼ 2.648 g cm�3, and speed of propagation of the shear wave is
vs ¼ (μq/ρq)

1/2 ¼ 3.340 � 105 cm s�1. Based on the equations above, for a quartz
crystal oscillating at the unperturbed fundamental frequency of 10 MHz, a frequency
shift of 1 Hz is caused by a mass deposited per unit area equal to 4.49 � 10�11 g.

The mass sensitivity of the quartz is not uniform over the entire surface of the
quartz but has a maximum in the center and decreases as it approaches the edges of
the electrodes. The experimental results [21] show that the spatial distribution of
mass sensitivity on the quartz surface follows the distribution of the vibration
amplitude. Both the sensitivity and the acceleration follow a Gaussian distribution
and, in particular, the sensitivity is proportional to the square of the radial
displacement.
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2.3 Kanazawa: Gordon Equation: Quartz Crystal in Contact
with a Liquid

The first pioneering physical model for the quantitative determination of the
variation of the resonance frequency of a quartz crystal immersed in a liquid was
developed by Kanazawa and Gordon [22]. This model is based on the assumption
that the quartz crystal is a perfectly elastic solid, therefore not subject to mechanical
energy losses by dissipation, and the liquid is a purely viscous fluid (or Newtonian
fluid). Quartz crystal stable oscillation can be obtained when one side of the quartz is
in contact with a liquid. However, the viscous effect of the liquid causes not only a
large variation in the resonance frequency but also a loss in the Q quality factor,
causing instability and total damping of the oscillation. It is possible to determine the
physical behavior of the quartz crystal–liquid system, by considering the coupling
between the elastic shear wave in the crystal and the one propagating within the
viscous fluid. The resonance condition results from the choice of appropriate bound-
ary conditions for the quartz crystal–liquid interface.

The resulting wave is composed of an undamped shear wave that propagates
inside the crystal along the thickness direction and of a highly damped shear wave
propagating within the liquid away from the crystal surface (Fig. 2). Propagation
waves in the liquid may be written in terms of the instantaneous velocity of the liquid
at a given position y:

vx y; tð Þ ¼ U0e�k y�hsð Þ cos k y � hsð Þ � ωt½ �

where U0 is the wave amplitude at the separation surface, hs is the quartz crystal
thickness, and k is the propagation constant.

Fig. 2 The vibration of a quartz crystal in contact with a liquid medium consists of a stationary
shear wave propagating in the quartz and a strongly damped acoustic wave that propagates within
the liquid. Reprinted with permission from [23]
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The characteristic length (or penetration length), λ, which describes the envelope
of the damped oscillation, is equal to 1/k, the reciprocal of the propagation constant.
The characteristic length can be written in terms of density ρL and viscosity ηL of the
liquid as follows:

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ηL

π f 0ρL

r

For an AT-cut quartz crystal vibrating at 10 MHz, with one face in contact with
pure water at T ¼ 20�C, ρL ¼ 0.9982 g cm�3

, and ηL ¼ 1.0022 � 10�2 g cm�1 s�1,
the characteristic length is about 180 nm.

Assuming (1) the continuity of the velocity field at the separation surface (that is
the quartz surface transverse speed is equal to that of the adjacent fluid) and (2) the
force exerted by the liquid on the quartz surface is equal and opposite to the force
that the quartz exerts on the fluid, the difference Δf between the resonance frequency
of the unperturbed crystal f0 and that in contact with the liquid is given by the
Kanazawa–Gordon equation:

Δ f ¼ f 0
3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ηL ρL

π μqρq

r

According to this model, the quartz crystal does not transmit the vibration to the
entire liquid above the surface, since the transverse displacement decays with
exponential law with a characteristic decay length, λ, so that just a thin layer of
liquid produces the response of the quartz crystal. The effective mass of liquid ΔmL

can be calculated using the following relation:

ΔmL ¼ λρL ¼
ffiffiffiffiffiffiffiffiffi
ρLηL

πf 0

r

By considering the above equations, for an AT-cut quartz crystal vibrating at
10 MHz, with one face in contact with pure water at T ¼ 20�C, ρL ¼ 0.9982 g cm�3,
and ηL ¼ 1.0022 � 10�2 g cm�1 s�1, the frequency shift is Δf ¼ 2,020 Hz and the
effective mass of liquid is ΔmL ¼ 17 � 10�6 g.

2.4 Small Load Approximation: The Electromechanical
Model

A more general description of the response of the quartz crystal resonator in contact
with a generic sample is given by the so-called small load approximation model
[24, 25]. It can be derived using the electromechanical model of a quartz crystal
resonator. In the approximation of small loads and small frequency variations close
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to the resonance, the equivalent electrical circuit of the quartz crystal is known as the
Butterworth-Van Dyke (BVD) circuit.

The BVD circuit combines a “mechanical branch” in parallel with an electrical
branch (Fig. 3). The “mechanical branch” consists of three elements in series: an
inductor Lq, which corresponds to the initial mass of the quartz crystal, a capacitor
Cq, which represents the quartz mechanical elasticity, and a resistance Rq, which
corresponds to the dissipation of mechanical energy, caused by effects of viscosity
and friction. The electrical branch consists only of a capacitor, C0, which mainly
corresponds to the value of the electrical capacity between the electrodes deposited
on the quartz crystal surface.

The electrical parameters of the BVD equivalent circuit based on the physical
characteristics of an AT-cut quartz crystal resonators are given in Table 1 [26].

Using the BVD equivalent circuit, any load on the quartz crystal surface can be
represented as a “load impedance” ZL in series to the “mechanical branch” (Fig. 4).

Table 1 Electrical
parameters of the BVD model
as a function of the physical
characteristics of an AT-cut
quartz crystal

Parameter Expression

C0
ε22A
hs

Cq 8Ae26
2

π2hsGq

Lq ρq hs
3

8Ae26
2

Rq π2hsηq

8Ae26
2

where ε22 is the quartz dielectric constant, e26 is the piezoelectric
constant depending on the quartz cutting angle, A is the electrode
surface deposited on the quartz, and Gq ~ 29.3 � 109 Pa is the
shear modulus of an AT-cut quartz

Fig. 4 Equivalent circuit
for a loaded quartz crystal
resonator, according to
BVD model

Fig. 3 Equivalent circuit
for an unperturbed quartz
crystal resonator according
to the BVD model

322 B. Della Ventura et al.



The load impedance is in general equal to the ratio between the applied stress and
the speed on the quartz crystal surface. Using the BVD equivalent circuit, it is
possible to derive an important relationship that binds the resonance frequency and
the dissipation variation as a function of the stress–speed ratio. So that if an explicit
form of ZL is known, it is possible to calculate both frequency and dissipation
variations no matter what is the sample in contact with the quartz crystal surface.

In this model it is useful to introduce a complex resonance frequency defined as
follows:

~f ¼ f þ iΓ

where the real part f is the resonance frequency and the imaginary part Γ is “half
bandwidth at half maximum” of the resonance. Indeed, Γ is related to the dissipation
factor D, which is a dimensionless parameter defined as the ratio between the energy
loss and stored in each cycle:

D � Edissipated

2πEstored

through the following relation:

D ¼ 2Γ
f

Dissipation is an important physical observable because it is related to the
viscoelastic properties of the sample in contact with the quartz crystal surface.

In the small load approximation one obtains the following relationship:

Δ~f

f f
¼ i

πZq
ZL ¼ i

πZq

σ

_u

where Zq ¼ ρqvq ¼ (ρqμq)
1/2 ¼ 8.8 � 105 g cm�2 s�1 is the acoustic impedance of an

AT-cut quartz crystal, σ is the mechanical stress, and u’ is the velocity on the quartz
crystal surface, respectively. This relationship is decisive for modeling QCM data
and will be used in the next paragraph to derive frequency and dissipation variations
for a layered system evenly distributed over the quartz crystal surface. These
equations are valid if the following conditions are fulfilled:

• the quartz crystal and the layered system are laterally homogeneous and infinite;
• the quartz crystal mechanical deformation is caused only by a transverse shear

wave with a wave vector perpendicular to the surface of the crystal (thickness-
shear mode). There are no compression and no flexural waves;
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• the stress tensor is proportional to that of the deformations, that is a linear
viscoelasticity relationship applies;

• the contribution due to piezoelectric stiffness can be neglected.

2.5 Semi-Infinite Viscoelastic Layer Newtonian Liquid

For a QCM in contact with a semi-infinite viscoelastic medium, there is a transverse
shear wave inside the quartz crystal and a shear wave propagating through the liquid
away from the quartz crystal surface. In addition, for a Newtonian liquid the
imaginary part of the viscosity is null and the real part is constant and independent
from the frequency. In the framework of the small load approximation, the complex
frequency variation is given as follows:

Δ~f

f f
¼ 1

πZq

�1 þ iffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πnf f ρLηL

q

By separating the real and imaginary part of the relation above, the resonance
frequency variation is calculated as follows:

Δf f ¼ �f f
3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
nρLηL

πμqρq

r

which corresponds to the Kanazawa–Gordon equation, and the dissipation variation
as follows:

ΔD ¼ 2f f
1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
nρLηL

πμqρq

r

By considering the above equation, for an AT-cut quartz crystal vibrating at
10 MHz, with one face in contact with pure water at T ¼ 20�C, ρL ¼ 0.9982 g cm�3,
and ηL ¼ 1.0022 � 10�2 g cm�1 s�1, the dissipation shift is ΔD ¼ 404 � 10�6.

It is worth noting that frequency and dissipation variations scale as √n with the
QCM overtone number. By combining the equations above, it is shown that for a
Newtonian liquid in contact with a QCM that

ΔD ¼ �2
Δf f

f f

no matter what liquid is in contact with the quartz crystal surface and which QCM
overtone is interrogated.
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2.6 Purely Inertial Layer: Sauerbrey’s Equation

For the case of QCM in contact with a purely inertial load, the viscoelasticity can be
ignored. One can derive the frequency shift�mass proportionality of the Sauerbrey’s
equation in the small load approximation. The stress induced by a very thin layer is
only caused by inertia and it is given as follows:

σ ¼ �ω2u0m f

where u0 is the oscillation amplitude and mf is the mass of the inertial layer. By
inserting it in the small load approximation, the Sauerbrey equation is obtained
again:

Δ f

f f
¼ �2

f f

Zq
m f

The imaginary part of the complex frequency is null because the viscoelasticity of
the load has been neglected.

2.7 Viscoelastic Layer of Arbitrary Thickness

In the small load approximation model it is possible to derive a more general relation
than the Sauerbrey’s equation, if the hypothesis of very thin deposited films is
abandoned and viscoelastic films of an arbitrary thickness are considered. In this
case the vibration consists of a transverse shear wave inside the quartz crystal and a
shear wave transmitted and reflected within the viscoelastic layer.

In the approximation of a viscoelastic layer thickness much smaller than the
length of the propagation wave, the small load approximation provides the following
relationship:

Δ~f

f f
¼ �2

f f

Zq
m f 1 þ Zq

2

Z f
2 π

m f

mq

� �2
 !

where Zf is the complex acoustic impedance of the viscoelastic layer and mf is the
mass of the viscoelastic layer. If mf << mq, the previous equation reduces to the
Sauerbrey’s equation. Otherwise, the terms in bracket corresponds to the “visco-
elastic correction” to the Sauerbrey’s equation.
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2.8 Viscoelastic Layer in Liquid

The small load approximation is used to quantify the variation of the complex
resonance frequency of a QCM in contact with a viscoelastic film and immersed in
a liquid. In this case the wave is made of a transverse shear wave inside the quartz
crystal, a shear wave transmitted in the viscoelastic layer and then reflected at the
separation surfaces of the crystal–viscoelastic layer and viscoelastic layer–liquid,
and finally a propagation wave that travels within the liquid far from the surface of
the viscoelastic layer.

The small load approximation predicts the following relation for the variation of
the complex resonance frequency:

Δ~f

f f
¼ i

πZq
ZL þ i2πf f m f 1 � ZL

2

Z f
2

� �� �

The first term in the sum corresponds to the Kanazawa–Gordon equation (liquid
contribution), the second term corresponds to the Sauerbrey’s equation (inertial mass
layer load), and the third term is a viscoelastic correction caused by the liquid
environment, also known in literature as the “missing mass effect” [27].

In most experimental setups, the resonance frequency is determined respect to a
reference state where the quartz is already immersed in liquid, in this case the
previous equation can be written as follows:

Δ~f

f f
¼ � 2f f m f

Zq
1 � ZL

2

Z f
2

� �

Showing that in this case the liquid contribution leads to a smaller mass of the
viscoelastic layer.

3 QCM Detection Scheme and Electronic Interfaces

The application of a quartz crystal as sensor requires the usage of an appropriate
electronic interface. In the next paragraphs two different approaches are described in
detail: (1) quartz oscillators and (2) network or impedance analysis.

A quartz crystal is a resonant element and stable vibrations can be ensured by
using a simple oscillator driver. In this scheme, the output signal consists of an
analog voltage whose frequency can be processed with very high accuracy by a
digital system. Network or impedance analysis is based on the passive interrogation
of the quartz crystal for monitoring the amplitude and phase response, in order to
characterize the electrical parameters of the quartz.
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3.1 Quartz Oscillators

The application of oscillator circuits as an electronic interface for QCM devices is
one of the most commonly used methods for recovering frequency variations with a
high accuracy. Since a quartz crystal is a resonant element, it can be driven at a stable
amplitude with an appropriate electronic circuit. It should be noted that the quartz
itself is an integral part of the oscillator circuit and particular attention must be paid
in the circuit design. Application of quartz crystal oscillators in liquid phase or in
contact with heavy-load layers causes a drastic decrease in both the quality factor Q
and phase slope so that a suitable electronic configuration should be developed and
electronic components selected.

The advantages of the oscillator circuit scheme consist mainly in the capability of
continuous data monitoring and in the fact that frequency measurements can be
made with very high accuracy. In addition, the integration capability and low-cost
electronic circuitry makes this detection scheme ideal for air–vacuum applications
and suitable for the most common chemical applications.

The general requirements to drive a quartz crystal at stable oscillations in a closed
resonant loop are to maintain the loop gain equal to 1 and to have a total loop phase
shift equal to zero or a multiples of 360� (Barkhausen criteria). With reference to the
Pierce oscillator circuit in Fig. 5, the inverting amplifier causes a 180� phase shift
and the phase condition of the Barkhausen criteria is ensured by the additional 180�

phase shift introduced by the feedback network, which consists of R1, C1 (90� phase
shift), and quartz, C2 (90� phase shift).

The main requirements for the application of a QCM based on quartz oscillator
interfaces for sensing liquid samples were found by Barnes in 1991 [28]:

• the quartz oscillator should operate near its series resonance frequency, where the
effects of the parallel capacitance on the frequency variations are minimized;

• one face of the resonator should be grounded for electrochemical or biological
applications and for reducing parasitic capacitance effects;

• an automatic gain control (AGC) should be developed to control the loop gain to
ensure stable oscillation for heavy-load and highly viscous samples;

Fig. 5 Criteria for stable
oscillation using a Pierce
oscillator
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• the motional resistance, which is the value of the resistor in the motional branch
of the BVD model, should be monitored;

• the parallel capacitance is a key parameter in determining the oscillation
frequency.

Standard electronic oscillators have been widely used in QCM applications under
various experimental setups. For example, openQCM, an open source QCM device
designed for general purposes [20], uses a circuit based on the standard Pierce
oscillator configuration. The IC oscillator incorporates an unbuffered inverter plus
a standard buffered inverter into a single device, the first one is used as a linear
amplifier for the crystal oscillator. The feedback network made by capacitors C1, C2,
and the RF resistor ensures the phase shift for stable oscillations. The output of the
oscillator circuit is a buffered square-wave output, whose frequency can be measured
with a resolution of 0.1 Hz by using the microcontroller frequency counter, embed-
ded in the openQCM device (Fig. 6).

The OpenQCM based on Pierce oscillator has been used in several scientific
applications demonstrating the possibility of using this configuration of oscillators
both in gas and in liquid. Researchers demonstrated the capability of using an array
of openQCM electronic circuits for environmental sensing. Using an array of
polymer-coated QCM sensors for selective gas sensing, they obtained results that
are comparable to those of a high-end commercial QCM system [29] (Fig. 7).

Researchers also demonstrated the capability of using the openQCM oscillator as
the electronic interface for QCM-based immunosensor for detecting small molecules
[30]. In this case the quartz crystal electrode is antibody-functionalized using

Fig. 6 Standard Pierce oscillator as the electronic interface for the openQCM device. Reprinted
with permission from [20]
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Photochemical Immobilization Technique, which is capable of detecting pesticide like
parathion in water with a limit of detection (LOD) approximately equal to 0.8 μg/L.

The Pierce standard oscillator has the disadvantage of not being able to have one
face of the resonator grounded and does not guarantee stable oscillations for heavy
loads or highly viscous media.

A variety of modifications to the standard oscillators have been proposed in QCM
applications [31]. As suggested by Barnes, an oscillator integrating an Automatic
Gain Control (AGC) system should be developed for QCM applications. The AGC
system aims to keep constant the output amplitude of the oscillator. For this purpose,
an input voltage is supplied to the system in order to modify the gain of the amplifier
so that the signal is kept constant with respect to a reference. In addition, the AGC
design claims also a proportionality between the supplied voltage and the variation
of the motional resistance, which is related to the dissipation variation [32, 33].

3.2 Network or Impedance Analysis

The aim of the network or impedance analysis is to monitor the amplitude variations
and the phase response of a quartz crystal resonator in order to completely charac-
terize its electrical parameters. The network analysis principle is based on the passive
interrogation of the quartz crystal sensor by sweeping the frequency around the
resonance and analyzes its impedance/admittance behavior.

Unlike oscillator circuits, the network analysis has the advantage of passively
interrogating the quartz sensor so that the circuit interface can’t alter the electrical
parameters of the quartz resonator. Thanks to the passive operation of the quartz
crystal; it is also possible to minimize parasitic influences and exclude their effects
by means of a calibration procedure.

The main disadvantages of the standard network analysis are the high costs and
the large dimensions, which do not consent the development of a portable and
integrable QCM device. Furthermore, the passive quartz stimulation scheme does
not allow for a multi-scan analysis of fundamental frequencies and overtones in a

Fig. 7 Scheme of QCM operation using an array of six Pierce oscillators working in parallel for
selective gas sensing. Reprinted with permission from [29]
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relatively short time, nor does it allow for the simultaneous interrogation of multiple
sensors with the same interface.

Researchers have implemented various solutions by developing compact network
analyzer electronic interfaces, in order to take advantage of the potentiality of the
conventional bulky devices. Researchers developed a voltage divider-based network
analyzer, whose basic principle is to drive the quartz crystal in voltage divider circuit
made by the quartz itself and a series resistor of known value. By measuring the
overall voltage of the divider, the voltage across the quartz crystal and phase shift
between them, it is possible to calculate the unknown impedance of the quartz
crystal.

An interesting approach, which enhances the voltage divider, was developed by
Kankare and co-workers [35]. The schematic diagram of the electronic interface is
shown in Fig. 8: the excitation signal fed to the voltage divider consists of a double-
sideband suppressed carrier amplitude modulated signal whose carrier is swept
around the resonance frequency range. By mixing the input excitation signal with
the QCM output and removing high frequency and DC components using a band-
pass filtering, the resulting output signal is formed by two coherent terms which
contains information about both real and imaginary part of the surface load imped-
ance. This strategy has special advantages compared to standard voltage divider
techniques: (1) the output signal is mixed down to a low frequency region, which
makes the signal acquisition and processing easier; (2) because the output signal is
made of the difference of two coherent signals, any additive source of noise is
automatically canceled; (3) the differential form of the output signal is advantageous
in case of heavily loaded QCM resonators.

Recently a compact, reliable, and open source scalar network analyzer electronic
interface for QCM has been developed by openQCM [20]. The device is capable of
measuring simultaneously frequency and dissipation variations of the quartz crystal
sensors. The electronic front-end mainly consists of a scalar network analyzer; the
main block diagram is shown in Fig. 9. The scheme of measurement follows the
principle of passive interrogation of the quartz sensor by sweeping around the
resonance frequency. The actuation signal is generated using the AD9851
DDS/DAC frequency synthesizer, which can generate a sine wave with frequency
from DC up to 72 MHz, with an output tuning resolution of about 0.04 Hz when
clocked at 180 MHz. The output signal is read by AD8302 gain and phase detector,
which is capable of measure the magnitude ratio, defined as gain, and phase

Fig. 8 Schematic diagram
of the electronic interface,
enhancing voltage divider-
based network analyzer.
Reprinted with permission
from [34]
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difference between two signals, from low frequencies up to 2.7 GHz. The AD8302
measures the gain loss through the quartz crystal, referenced to the input signal, and
simultaneously the phase lag between the response and actuation signal. The wide-
range frequency output capability enables to interrogate the quartz sensor not only at
the fundamental frequency but also at higher modes of vibration.

3.3 Functionalization Methods of the QCM Gold Surface

The sensitivity and specificity of QCM-based immunosensors is dependent on the
immobilization of a recognition layer. Various strategies have been employed for the
immobilization of antibodies on the crystal surface. Passive adsorption of protein/
enzyme has been the most widely used method because the molecules can be
attached to different interfaces with various mechanisms and forces acting between
protein and surface, including hydrophobic, electrostatic, and van der Waals forces.
Generally proteins tend to adhere onto hydrophobic surfaces due to the release of
water dipoles from the hydrophobic surface to the bulk solution during protein
adsorption [36]. In addition, the protein concentration plays an important role in
the steady-state adsorption of proteins only on hydrophilic surfaces [37], not on
hydrophobic ones [38].

Fig. 9 Simplified block diagram of the scalar network analyzer electronic interface, developed for
openQCM Q-1 with dissipation monitoring device. Reprinted with permission from [20]
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Proteins can undergo conformational changes and unfold due to different forces
acting during the adsorption process, affecting their biological activity. “Hard”

proteins (lysozyme, β-lactoglobulin, α-chymotrypsin, etc.) upon adsorption retain
their dissolved state without spreading. In contrast, “soft” proteins (bovine serum
albumin (BSA), IgG, fibrinogen, or α-lactoglobulin) can spread on the surface upon
adsorption. “Soft” proteins tend to adsorb onto various surfaces as compared to
“hard” proteins that adsorb onto hydrophilic surfaces only when there is electrostatic
attraction between protein molecules and the surface.

The surface roughness also affects adsorption and the morphology of adsorbed
protein. For example, larger amounts are adsorbed to the hydrophobic surfaces as
compared to the hydrophilic ones. Only on smooth hydrophilic or hydrophobic
surfaces does collagen form elongated assemblies with small or high surface fea-
tures, respectively [39]. Random orientation is often encountered with protein
adsorption; that is, there are a few different possible orientations of IgG on the
surface (Fig. 10).

Several strategies can be adopted to functionalize the surfaces covalently. One
employs the initial generation of amino groups on the quartz surface by treatment
with 3-aminopropyltriethoxysilane (APTES) followed by the activation of amine-
functionalized surface with glutaraldehyde to generate aldehyde groups, which bind
to the antibody through its amino groups. After the cleaning step, oxygen plasma
treatment is done to generate OH groups on the surface, resulting in a reduction of
the surface roughness and improving the formation of homogeneous layer. The gold
surfaces are then carefully rinsed with DI water and dried under a stream of nitrogen
gas. Finally, the substrates are dried in an oven at 110�C for 1 h to remove the
moisture present on the surface. APTES solution is successfully prepared in
pre-heated anhydrous toluene (100–120�C), and the cleaned gold surfaces are
immersed in a solution of different concentrations of APTES for 12 h of silanization
(incubation) time to reach the saturation for growing silane layer at room tempera-
ture in a nitrogen ambient.

APTES-modified gold surfaces are then washed in PBS and allowed to react with
2.5% (v/v) glutaraldehyde in PBS for 30 min at room temperature. This is followed
by thoroughly rinsing the substrate with DI water to avoid non-specific adsorption of
the antibody. The glutaraldehyde-activated surface is then reacted with 0.1 mg/mL
of capture antibodies in PBS buffer along with 1% Tween 20 at room temperature for

Fig. 10 Different possible orientations of IgG on a substrate. Reprinted with permission from [40]
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15 min to get an antibody layer. At this point the gold surfaces are ready to detect the
antigens [41]. In Fig. 11, a schematic representation of the functionalization of gold
surfaces with the method above descripted is shown.

In addition, the crystallizable fragment (Fc)-binding proteins such as protein A,
protein G, and protein A/G can be employed for an oriented immobilization of
antibodies on the gold-coated QCM surface such that their antigen-binding sites (Fab
region) are completely free for binding antigens. Protein A and Protein G are small
proteins, derived from bacteria, which can specifically bind the Fc portion of
antibodies allowing oriented systems to be obtained [42]. The IgG binding domain
of Protein A, known as the Z-domain or ZZ-domain, is also used as a smaller
synthetic option for Fc binding. This technique offers a method for truly obtaining
oriented antibodies as binding can only occur via the Fc portion. Due to its
effectiveness, protein A, or its derivatives, has been exploited with many surface
immobilization strategies including biotin–streptavidin [43], SAMs [25, 26],
EDC/NHS chemistry [44–46], glutaraldehyde [47], tyrosinase chemistry [47],
non-natural amino acid insertion, gold-binding peptide or polystyrene affinity ligand
fusion, and additional protein linkers [48]. It is worth to note that several issues may
arise:

• the Protein A capture of the Fc is reversible, protein A has been reported to bind
Fab regions and albumin (although to a much lesser extent);

• it is required that the Fc binding site of the Protein A is correctly oriented at the
substrate to permit antibody binding [49].

Another method to immobilize the IgG antibodies onto gold surface is by using
the interactions between thiols and gold, which are very strong and have been
exploited for antibody binding by employing self-assembled layers of thiols and
sulfides. One approach for site-oriented immobilization of immunoglobulins onto
the gold supports consists in using the native immunoglobulin thiol groups, which
are free after the splitting of the intact antibody into two half-IgG fragments without
the destruction of the binding site of the antibody (Fig. 12). The half-IgG fragments
can be immobilized onto gold supports by simple adsorption. The proposed
approach is advantageous over existing methods because the immobilized antibodies
maintain both high antigen-binding constants and high stability.

Another very elegant technique called photochemical immobilization technique
(PIT) consists in a light-assisted approach for Ab immobilization and was adopted
by Della Ventura et al. [51, 52]. Disulfide bonds are broken upon absorption of UV
light by nearby aromatic amino acids, yielding reactive thiol groups that are effective
for oriented binding onto gold electrodes. A working scheme of this technique is
shown in Fig. 13.

The authors affirm that PIT preserves the native structure and the functional
properties of the immobilized proteins while favoring the proper orientation of the
biomolecule on the support. This is achieved by avoiding any chemical and thermal
treatment. One of the advantages of PIT relies in the wide field of application since
the closely spaced triad of residues Trp/Cys-Cys is present in all members of the
immunoglobulin superfamily. Every IgG has 12 intradomain disulfide bridges near a
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tryptophan residue, one of them being present in every domain of the protein. It is
likely to induce the opening of these disulfide bonds through UV irradiation of the
near aromatic residue. With the breaking of these disulfide bridges, there is an
increase of free thiol groups, which can react with a gold or thiol-rich surface.

Fig. 12 The half-IgG fragments produced by reaction with 2-MEA immobilized onto gold
supports by simple adsorption. The fragment antigen binding is free to recognize the analytes.
Reprinted with permission from [50]

UV 
Photon

a) b)

Fig. 13 (a) The protein solution is irradiated. (b) One UV photon is absorbed by a tryptophan side
chain, which transfers the energy to the near cysteines. The disulfide bridge opens and the thiol
groups so produced can effectively interact with the gold surface
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3.4 Detection Step

QCM-based biosensor represents a new technology for the rapid detection, ease of
use, low cost, online monitoring, shorter analysis time to measure pathogens, toxins,
pesticides, and any analyte that can be recognized by aptamers, antibodies, or
complementary DNA strand. Nevertheless it is worth to highlight that the
dimensions of the analyte to recognize play a key role in the detection step because
in case of large molecules no strategy is needed and a direct frequency shift will be
shown. On contrary, when the molecules to detect are of medium or small size, it is
indispensable to use different strategies to ballast them and to improve the limit of
detection (LOD).

Starting from the detection of large molecules, Escherichia coli O157:H7 (E. coli
O157:H7) is one of the most studied water contaminants because it is a dangerous
pathogen. It causes serious illnesses such as bloody diarrhea, bloody feces, anemia,
and kidney failure. Hence, an establishment of rapid and sensitive methods for
E. coli O157:H7 detection is strongly needed to control this pathogenic bacterium
in water supplies or food. Traditional methods for testing of E. coli O157:H7 include
plating and culturing, enumeration methods, and biochemical testing. Although the
detection limits for these methods are very low (about a few colony-forming units
(CFU)/ml), the testing time is time-consuming (from 1 day to 1 week). Besides,
some new techniques for rapid detection of this bacteria have been developed
including immunoassays, polymerase chain reaction (PCR) [8], DNA microarrays,
and immunomagnetic separations.

It has been shown that sensitivity and selectivity of these methods are good and
detection time for these methods is from about 2 h to 24 h. However, these methods
have a disadvantage in that they are expensive or complicated due to the use of
laboratories equipped with specific instruments and chromospheres. Therefore, they
are not suitable for rapid test of E. coli O157:H7 bacteria. Nurliyana et al. [53]
developed a QCM-based biosensor anchoring the antibodies onto gold surface with
SAMs method. The LOD they were able to reach was 102

–103 CFU/mL of E. coli
O157:H7 observing frequency shifts of about 15 Hz and 34 Hz, respectively. This
result allows QCM system to be used for qualitative and quantitative analysis of cell
concentration in solution. Fulgione et al. [54] reached an LOD of 100 CFU/mL in the
detection of Salmonella typhimurium in chicken meat with a relatively simple
protocol which requires a pre-enrichment step lasting only 4 h at 37�C.

The reliability of the proposed immunosensor has been demonstrated through the
validation of the experimental results with ISO standardized culture method which
takes up to 10 days to provide a reliable response. In order to further improve the LOD
of bacteria, some authors developed a quartz crystal microbalance immunosensor for
detection of E. coli O157:H7 by self-assembling of protein A and affinity-purified
anti-E. coli O157:H7 antibodies on the gold electrode of an AT-cut piezoelectric
quartz crystal. To enhance the sensitivity of the QCM immunosensor, nanoparticle–

antibody conjugates, which were prepared using streptavidin-conjugated
nanoparticles (145 nm diameter) and biotinylated anti-E. coli antibodies, were used
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for signal amplification. After the binding of E. coli O157:H7 cells with the antibodies
immobilized on the electrode, nanoparticle–antibody conjugates were introduced as
mass amplifiers (Fig. 14). Compared to the direct detection, the binding of the
nanoparticle conjugates further resulted in a decrease in resonant frequency and an
increase in resonant resistance, and the detection sensitivity was improved by lower-
ing the detection limit until to 101 CFU/mL [55].

The same strategy has been used to detect water contaminants with small/medium
dimensions such as organic compounds. An example is the detection of parathion, a
pesticide (M ¼ 292 Da) for which a signal amplification procedure is desirable since
the signal they induce in the transducer, and specifically in a QCM, is undetectable.
The authors extend the application of such a method to small analytes by showing
that once the working surface of a QCM has been properly functionalized, a limit of
detection lower than 1 ppb is reached for parathion. The strategy adopted to enhance
the sensitivity of the QCM-based immunosensors is like sketched in Fig. 14. Thanks
to PIT the Abs are covalently bound to the QCM gold surface with antigen-binding
site exposed to the fluid. The solution containing the parathion is subsequently
conveyed to the cell, and the analyte is recognized by the Abs. At this stage, no
appreciable signal is detected in view of small mass of the parathion, but the
following interaction with a ballast constituted by functionalized Au-NPs allows
one to detect the presence of small molecules. In this scheme the same Abs used to
functionalize the gold surface of the QCM are tethered to the Au-NPs. In Fig. 15 the
output of the QCM is shown, which includes the functionalization (steps I–III) and
the measurement (steps IV–VI) of parathion at 290 μg/L [30].

Gold nanoparticles have been used also to detect Hg2+ by Zhong et al. [56]. The
authors realized a short mercury-specific aptamer (MSA) along with gold
nanoparticles (Au-NPs) to determine Hg(II) ion by a combination of a QCM-based
sensor and a flow system. The MSA binds specifically to Hg(II), and the Au-NPs can

Fig. 14 Use of the nanoparticle–antibody conjugates for signal amplification in the detection of
E. coli O157:H7 with QCM immunosensor. Reprinted with permission from [55]
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amplify the signal to enhance sensitivity. Specifically, the short thiolated MSAs are
immobilized on the surface of the QCM as the capture probe, and the MSAs are
linked to the Au-NPs as the linking probe. The two components can form a sandwich
structure of the T-Hg(II)-T type in the presence of Hg(II) ions. This leads to change
in the mass on the QCM and a change in the resonance frequency. Hg(II) can be
determined with a detection limit of 0.24 � 0.06 nM, which is three orders of
magnitude better than previous methods. The sensor can be regenerated by
disrupting the T-Hg(II)-T base pairs with a solution of cysteine. The water can
contain also phosphates, nitrates, ammonia, and their mixtures that can leach into the
groundwater. Those chemicals cause a number of health issues, such as kidney
problems and cancer. These risks are high for pregnant and nursing women, infants,
and the elderly. Those contaminants are not so easy to detect with QCM, and
strategies are necessary to recognize them. Ayad et al. [57] used a thin-film
polyaniline (PANI) as the sensing materials. The adsorption of the compound onto
the PANI-coated QCM resulted in increasing the frequency shift due to hydrophilic
nature of the film and electrostatic interactions.

However, QCM might be appropriate for the development of potential
bio-analytical systems that are based on the use of various sensing technologies
into a single system. It is possible to integrate QCM with SPR (surface plasmon
resonance) and with electrochemical detection to extend the range of applications.
The reuse of the crystal is another concern for low-cost applications. Following
various cleaning procedures, it is possible to regenerate the electrodes for 3–4 times.
QCMs have been widely used in a broad range of analytical applications as
the sensing procedure is simple, cost-effective, non-hazardous, real time, and less

Fig. 15 I: Functionalization by PIT (Abs are tethered to the probe surface); II: the washing by PBS
solution (1�) removes unspecific bonds giving rise to a small increase in the frequency; III: BSA is
conveyed to the cell and no frequency change is observed warranting the full coverage of the
surface: IV: parathion is injected, but no frequency change is observed because of its small mass; V:
the injection of the Au-NPs complexed with Abs against parathion yields a huge frequency change;
VI: the eventual washing with PBS (1�) does not change the frequency since all the bonds are
specific
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time-consuming. QCM results to be an appropriate sensing platform for the online
monitoring of analytes in water.

4 Conclusions

The availability of in-situ measurements and multiple detection analyses has
expanded water monitoring applications in various advanced techniques including
successful development in hand-held sensing devices. High sensitivity and real-time
monitoring of contaminants in water is offered by quartz crystal microbalance
(QCM) that is a very attractive technique for a large range of applications.
A major advantage of the technique used for liquid systems is that it allows for a
label-free detection of molecules. QCM is capable of measuring mass changes as
small as a fraction of a monolayer of atoms. QCM crystals are becoming a good
alternative analytical method in a great deal of applications such as biosensors,
analysis of biomolecular interactions, study of bacterial adhesion at specific inter-
faces, and pathogen and microorganism detection.
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